Bounds on Inverse Sum Indeg Index of Subdivision Graphs
Serdica Journal of Computing, Tome 12 (2018) no. 4, pp. 281-298.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The inverse sum indeg index $ISI(G)$ of a simple graph $G$ is defined as the sum of the terms $frac{d_G(u)d_G(v)}{d_G(u)+d_G(v)}$ over all edges $uv$ of $G$, where $d_G(u)$ denotes the degree of a vertex $u$ of $G$. In this paper, we present several upper and lower bounds on the inverse sum indeg index of subdivision graphs and $t$-subdivision graphs. In addition, we obtain the upper bounds for inverse sum indeg index of $S$-sum, $S_t$-sum, $S$-product, $S_t$-product of graphs. ACM Computing Classification System (1998): G.2.2, G.2.3.
Keywords: Degree, Subdivision Graph, Inverse Sum Indeg Index, Graph Operations
@article{SJC_2018_12_4_a4,
     author = {Pattabiraman, Kannan},
     title = {Bounds on {Inverse} {Sum} {Indeg} {Index} of {Subdivision} {Graphs}},
     journal = {Serdica Journal of Computing},
     pages = {281--298},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a4/}
}
TY  - JOUR
AU  - Pattabiraman, Kannan
TI  - Bounds on Inverse Sum Indeg Index of Subdivision Graphs
JO  - Serdica Journal of Computing
PY  - 2018
SP  - 281
EP  - 298
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a4/
LA  - en
ID  - SJC_2018_12_4_a4
ER  - 
%0 Journal Article
%A Pattabiraman, Kannan
%T Bounds on Inverse Sum Indeg Index of Subdivision Graphs
%J Serdica Journal of Computing
%D 2018
%P 281-298
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a4/
%G en
%F SJC_2018_12_4_a4
Pattabiraman, Kannan. Bounds on Inverse Sum Indeg Index of Subdivision Graphs. Serdica Journal of Computing, Tome 12 (2018) no. 4, pp. 281-298. http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a4/