Bounds on Inverse Sum Indeg Index of Subdivision Graphs
Serdica Journal of Computing, Tome 12 (2018) no. 4, pp. 281-298
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
The inverse sum indeg index $ISI(G)$ of a simple graph $G$ is defined as the sum of the terms $frac{d_G(u)d_G(v)}{d_G(u)+d_G(v)}$ over all edges
$uv$ of $G$, where $d_G(u)$ denotes the degree of a vertex $u$ of $G$. In this paper, we present several upper and lower bounds on the inverse sum
indeg index of subdivision graphs and $t$-subdivision graphs. In addition, we obtain the upper bounds for inverse sum indeg index of
$S$-sum, $S_t$-sum, $S$-product, $S_t$-product of graphs. ACM Computing Classification System (1998): G.2.2, G.2.3.
Keywords:
Degree, Subdivision Graph, Inverse Sum Indeg Index, Graph Operations
@article{SJC_2018_12_4_a4,
author = {Pattabiraman, Kannan},
title = {Bounds on {Inverse} {Sum} {Indeg} {Index} of {Subdivision} {Graphs}},
journal = {Serdica Journal of Computing},
pages = {281--298},
year = {2018},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a4/}
}
Pattabiraman, Kannan. Bounds on Inverse Sum Indeg Index of Subdivision Graphs. Serdica Journal of Computing, Tome 12 (2018) no. 4, pp. 281-298. http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a4/