Lagrange’s Bound on the Values of the Positive Roots of Polynomials
Serdica Journal of Computing, Tome 12 (2018) no. 4, pp. 227-246.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we present Lagrange's Joseph-Louis Lagrange, born Giuseppe Lodovico Lagrangia (25 January 1736 - 10 April 1813): Italian mathematician. theorem of 1767, for computing a bound on the values of the positive roots of polynomials, along with its interesting history and a short proof of it dating back to 1842. Since the bound obtained by Lagrange's theorem is of linear complexity, in the sequel it is called ''Lagrange Linear'', or LL for short. Despite its average good performance, LL is endowed with the weaknesses inherent in all bounds with linear complexity and, therefore, the values obtained by it can be much bigger than those obtained by our own bound ''Local Max Quadratic'', or LMQ for short. To level the playing field, we incorporate Lagrange's theorem into our LMQ and we present the new bound ''Lagrange Quadratic'', or LQ for short, the quadratic complexity version of LL. It turns out that LQ is one of the most efficient bounds available since, at best, the values obtained by it are half of those obtained by LMQ. Empirical results indicate that when LQ replaces LMQ in the Vincent-Akritas-Strzeboński Continued Fractions (VAS-CF) real root isolation method, the latter becomes measurably slower for some classes of polynomials.
Keywords: Lagrange, Polynomials, Roots
@article{SJC_2018_12_4_a1,
     author = {G. Akritas, Alkiviadis and W. Strzebo\'nski, Adam and S. Vigklas, Panagiotis},
     title = {Lagrange{\textquoteright}s {Bound} on the {Values} of the {Positive} {Roots} of {Polynomials}},
     journal = {Serdica Journal of Computing},
     pages = {227--246},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a1/}
}
TY  - JOUR
AU  - G. Akritas, Alkiviadis
AU  - W. Strzeboński, Adam
AU  - S. Vigklas, Panagiotis
TI  - Lagrange’s Bound on the Values of the Positive Roots of Polynomials
JO  - Serdica Journal of Computing
PY  - 2018
SP  - 227
EP  - 246
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a1/
LA  - en
ID  - SJC_2018_12_4_a1
ER  - 
%0 Journal Article
%A G. Akritas, Alkiviadis
%A W. Strzeboński, Adam
%A S. Vigklas, Panagiotis
%T Lagrange’s Bound on the Values of the Positive Roots of Polynomials
%J Serdica Journal of Computing
%D 2018
%P 227-246
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a1/
%G en
%F SJC_2018_12_4_a1
G. Akritas, Alkiviadis; W. Strzeboński, Adam; S. Vigklas, Panagiotis. Lagrange’s Bound on the Values of the Positive Roots of Polynomials. Serdica Journal of Computing, Tome 12 (2018) no. 4, pp. 227-246. http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a1/