New lower bounds for the number of ACG codes over F4
Serdica Journal of Computing, Tome 12 (2018) no. 4, pp. 219-226
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this paper we consider additive circulant graph (ACG) codes over F4 of
length n >= 34 and we present some new results for the number of these codes.
The most important result is that there exists a unique ACG code over F4 of
length 36 and minimum weight 11.
Keywords:
ACG, Additive Circulant Graph
@article{SJC_2018_12_4_a0,
author = {Varbanov, Zlatko and Hristova, Maya},
title = {New lower bounds for the number of {ACG} codes over {F4}},
journal = {Serdica Journal of Computing},
pages = {219--226},
year = {2018},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a0/}
}
Varbanov, Zlatko; Hristova, Maya. New lower bounds for the number of ACG codes over F4. Serdica Journal of Computing, Tome 12 (2018) no. 4, pp. 219-226. http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a0/