New lower bounds for the number of ACG codes over F4
Serdica Journal of Computing, Tome 12 (2018) no. 4, pp. 219-226.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we consider additive circulant graph (ACG) codes over F4 of length n >= 34 and we present some new results for the number of these codes. The most important result is that there exists a unique ACG code over F4 of length 36 and minimum weight 11.
Keywords: ACG, Additive Circulant Graph
@article{SJC_2018_12_4_a0,
     author = {Varbanov, Zlatko and Hristova, Maya},
     title = {New lower bounds for the number of {ACG} codes over {F4}},
     journal = {Serdica Journal of Computing},
     pages = {219--226},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a0/}
}
TY  - JOUR
AU  - Varbanov, Zlatko
AU  - Hristova, Maya
TI  - New lower bounds for the number of ACG codes over F4
JO  - Serdica Journal of Computing
PY  - 2018
SP  - 219
EP  - 226
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a0/
LA  - en
ID  - SJC_2018_12_4_a0
ER  - 
%0 Journal Article
%A Varbanov, Zlatko
%A Hristova, Maya
%T New lower bounds for the number of ACG codes over F4
%J Serdica Journal of Computing
%D 2018
%P 219-226
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a0/
%G en
%F SJC_2018_12_4_a0
Varbanov, Zlatko; Hristova, Maya. New lower bounds for the number of ACG codes over F4. Serdica Journal of Computing, Tome 12 (2018) no. 4, pp. 219-226. http://geodesic.mathdoc.fr/item/SJC_2018_12_4_a0/