Algorithms for Computing the Linearity and Degree of Vectorial Boolean Functions
Serdica Journal of Computing, Tome 10 (2016) no. 3-4, pp. 245-262
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this article, we study two representations of a Boolean function
which are very important in the context of cryptography. We describe
Möbius and Walsh Transforms for Boolean functions in details and present
effective algorithms for their implementation. We combine these algorithms
with the Gray code to compute the linearity, nonlinearity and algebraic degree
of a vectorial Boolean function. Such a detailed consideration will be
very helpful for students studying the design of block ciphers, including PhD
students in the beginning of their research.
ACM Computing Classification System (1998): F.2.1, F.2.2.
Keywords:
Boolean Function, Walsh Transform, S-Box, Linearity, Algorithms
@article{SJC_2016_10_3-4_a3,
author = {Bouyuklieva, Stefka and Bouyukliev, Iliya},
title = {Algorithms for {Computing} the {Linearity} and {Degree} of {Vectorial} {Boolean} {Functions}},
journal = {Serdica Journal of Computing},
pages = {245--262},
year = {2016},
volume = {10},
number = {3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2016_10_3-4_a3/}
}
TY - JOUR AU - Bouyuklieva, Stefka AU - Bouyukliev, Iliya TI - Algorithms for Computing the Linearity and Degree of Vectorial Boolean Functions JO - Serdica Journal of Computing PY - 2016 SP - 245 EP - 262 VL - 10 IS - 3-4 UR - http://geodesic.mathdoc.fr/item/SJC_2016_10_3-4_a3/ LA - en ID - SJC_2016_10_3-4_a3 ER -
Bouyuklieva, Stefka; Bouyukliev, Iliya. Algorithms for Computing the Linearity and Degree of Vectorial Boolean Functions. Serdica Journal of Computing, Tome 10 (2016) no. 3-4, pp. 245-262. http://geodesic.mathdoc.fr/item/SJC_2016_10_3-4_a3/