A Medical Image Denoising Method using Subband Adaptive Thresholding Based on a Shearlet Transform
Serdica Journal of Computing, Tome 10 (2016) no. 3-4, pp. 219-230
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
The image denoising process is of great importance when analyzing
images and their visualization. A major problem is finding the boundary
between clearing the noise and keeping the salient features in the images.
This paper proposes adaptive subband threshold image denoising in a shearlet
domain based on the Shannon entropy. The method does not suppose a
specific type of noise, it does not require data for its spectrum, nor does it
lead to highly complex computational algorithms.
ACM Computing Classification System (1998): I.5.4, I.4.3, I.4.5.
Keywords:
Medical Image, Denoising, Shearlet Tresholding, Shannon Entropy, Rician Noise
@article{SJC_2016_10_3-4_a1,
author = {Petrov, Miroslav},
title = {A {Medical} {Image} {Denoising} {Method} using {Subband} {Adaptive} {Thresholding} {Based} on a {Shearlet} {Transform}},
journal = {Serdica Journal of Computing},
pages = {219--230},
year = {2016},
volume = {10},
number = {3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2016_10_3-4_a1/}
}
TY - JOUR AU - Petrov, Miroslav TI - A Medical Image Denoising Method using Subband Adaptive Thresholding Based on a Shearlet Transform JO - Serdica Journal of Computing PY - 2016 SP - 219 EP - 230 VL - 10 IS - 3-4 UR - http://geodesic.mathdoc.fr/item/SJC_2016_10_3-4_a1/ LA - en ID - SJC_2016_10_3-4_a1 ER -
Petrov, Miroslav. A Medical Image Denoising Method using Subband Adaptive Thresholding Based on a Shearlet Transform. Serdica Journal of Computing, Tome 10 (2016) no. 3-4, pp. 219-230. http://geodesic.mathdoc.fr/item/SJC_2016_10_3-4_a1/