A Basic Result on the Theory of Subresultants
Serdica Journal of Computing, Tome 10 (2016) no. 1, pp. 031-048
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Given the polynomials f, g ∈ Z[x] the main result of our paper,
Theorem 1, establishes a direct one-to-one correspondence between the
modified Euclidean and Euclidean polynomial remainder sequences (prs’s) of f, g
computed in Q[x], on one hand, and the subresultant prs of f, g computed
by determinant evaluations in Z[x], on the other.
An important consequence of our theorem is that the signs of Euclidean
and modified Euclidean prs’s - computed either in Q[x] or in Z[x] -
are uniquely determined by the corresponding signs of the subresultant prs’s.
In this respect, all prs’s are uniquely "signed".
Our result fills a gap in the theory of subresultant prs’s. In order to place
Theorem 1 into its correct historical perspective we present a brief historical
review of the subject and hint at certain aspects that need - according to
our opinion - to be revised.
ACM Computing Classification System (1998): F.2.1, G.1.5, I.1.2.
Keywords:
Euclidean Algorithm, Euclidean Polynomial Remainder Sequence (prs), Modified Euclidean prs, Subresultant prs, Modified Subresultant prs, Sylvester Matrices, Bezout Matrix, Sturm’s prs
@article{SJC_2016_10_1_a2,
author = {Akritas, Alkiviadis G. and Malaschonok, Gennadi I. and Vigklas, Panagiotis S.},
title = {A {Basic} {Result} on the {Theory} of {Subresultants}},
journal = {Serdica Journal of Computing},
pages = {031--048},
year = {2016},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2016_10_1_a2/}
}
TY - JOUR AU - Akritas, Alkiviadis G. AU - Malaschonok, Gennadi I. AU - Vigklas, Panagiotis S. TI - A Basic Result on the Theory of Subresultants JO - Serdica Journal of Computing PY - 2016 SP - 031 EP - 048 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/SJC_2016_10_1_a2/ LA - en ID - SJC_2016_10_1_a2 ER -
Akritas, Alkiviadis G.; Malaschonok, Gennadi I.; Vigklas, Panagiotis S. A Basic Result on the Theory of Subresultants. Serdica Journal of Computing, Tome 10 (2016) no. 1, pp. 031-048. http://geodesic.mathdoc.fr/item/SJC_2016_10_1_a2/