A Basic Result on the Theory of Subresultants
Serdica Journal of Computing, Tome 10 (2016) no. 1, pp. 031-048.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Given the polynomials f, g ∈ Z[x] the main result of our paper, Theorem 1, establishes a direct one-to-one correspondence between the modified Euclidean and Euclidean polynomial remainder sequences (prs’s) of f, g computed in Q[x], on one hand, and the subresultant prs of f, g computed by determinant evaluations in Z[x], on the other. An important consequence of our theorem is that the signs of Euclidean and modified Euclidean prs’s - computed either in Q[x] or in Z[x] - are uniquely determined by the corresponding signs of the subresultant prs’s. In this respect, all prs’s are uniquely "signed". Our result fills a gap in the theory of subresultant prs’s. In order to place Theorem 1 into its correct historical perspective we present a brief historical review of the subject and hint at certain aspects that need - according to our opinion - to be revised. ACM Computing Classification System (1998): F.2.1, G.1.5, I.1.2.
Keywords: Euclidean Algorithm, Euclidean Polynomial Remainder Sequence (prs), Modified Euclidean prs, Subresultant prs, Modified Subresultant prs, Sylvester Matrices, Bezout Matrix, Sturm’s prs
@article{SJC_2016_10_1_a2,
     author = {Akritas, Alkiviadis G. and Malaschonok, Gennadi I. and Vigklas, Panagiotis S.},
     title = {A {Basic} {Result} on the {Theory} of {Subresultants}},
     journal = {Serdica Journal of Computing},
     pages = {031--048},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2016_10_1_a2/}
}
TY  - JOUR
AU  - Akritas, Alkiviadis G.
AU  - Malaschonok, Gennadi I.
AU  - Vigklas, Panagiotis S.
TI  - A Basic Result on the Theory of Subresultants
JO  - Serdica Journal of Computing
PY  - 2016
SP  - 031
EP  - 048
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2016_10_1_a2/
LA  - en
ID  - SJC_2016_10_1_a2
ER  - 
%0 Journal Article
%A Akritas, Alkiviadis G.
%A Malaschonok, Gennadi I.
%A Vigklas, Panagiotis S.
%T A Basic Result on the Theory of Subresultants
%J Serdica Journal of Computing
%D 2016
%P 031-048
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2016_10_1_a2/
%G en
%F SJC_2016_10_1_a2
Akritas, Alkiviadis G.; Malaschonok, Gennadi I.; Vigklas, Panagiotis S. A Basic Result on the Theory of Subresultants. Serdica Journal of Computing, Tome 10 (2016) no. 1, pp. 031-048. http://geodesic.mathdoc.fr/item/SJC_2016_10_1_a2/