Combinatorial Computations on an Extension of a Problem by Pál Turán
Serdica Journal of Computing, Tome 9 (2015) no. 3-4, pp. 257-268.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Turan’s problem asks what is the maximal distance from a polynomial to the set of all irreducible polynomials over Z. It turns out it is sufficient to consider the problem in the setting of F2. Even though it is conjectured that there exists an absolute constant C such that the distance L(f - g) = C, the problem remains open. Thus it attracts different approaches, one of which belongs to Lee, Ruskey and Williams, who study what the probability is for a set of polynomials ‘resembling’ the irreducibles to satisfy this conjecture. In the following article we strive to provide more precision and detail to their method, and propose a table with better numeric results. ACM Computing Classification System (1998): H.1.1. *This author is partially supported by the High School Students Institute of Mathematics and Informatics.
Keywords: Irreducible Polynomials, Distance Sets, Finite Fields
@article{SJC_2015_9_3-4_a10,
     author = {Gaydarov, Petar and Delchev, Konstantin},
     title = {Combinatorial {Computations} on an {Extension} of a {Problem} by {P\'al} {Tur\'an}},
     journal = {Serdica Journal of Computing},
     pages = {257--268},
     publisher = {mathdoc},
     volume = {9},
     number = {3-4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2015_9_3-4_a10/}
}
TY  - JOUR
AU  - Gaydarov, Petar
AU  - Delchev, Konstantin
TI  - Combinatorial Computations on an Extension of a Problem by Pál Turán
JO  - Serdica Journal of Computing
PY  - 2015
SP  - 257
EP  - 268
VL  - 9
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2015_9_3-4_a10/
LA  - en
ID  - SJC_2015_9_3-4_a10
ER  - 
%0 Journal Article
%A Gaydarov, Petar
%A Delchev, Konstantin
%T Combinatorial Computations on an Extension of a Problem by Pál Turán
%J Serdica Journal of Computing
%D 2015
%P 257-268
%V 9
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2015_9_3-4_a10/
%G en
%F SJC_2015_9_3-4_a10
Gaydarov, Petar; Delchev, Konstantin. Combinatorial Computations on an Extension of a Problem by Pál Turán. Serdica Journal of Computing, Tome 9 (2015) no. 3-4, pp. 257-268. http://geodesic.mathdoc.fr/item/SJC_2015_9_3-4_a10/