Representing Equivalence Problems for Combinatorial Objects
Serdica Journal of Computing, Tome 8 (2014) no. 4, pp. 327-354.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Methods for representing equivalence problems of various combinatorial objects as graphs or binary matrices are considered. Such representations can be used for isomorphism testing in classification or generation algorithms. Often it is easier to consider a graph or a binary matrix isomorphism problem than to implement heavy algorithms depending especially on particular combinatorial objects. Moreover, there already exist well tested algorithms for the graph isomorphism problem (nauty) and the binary matrix isomorphism problem as well (Q-Extension). ACM Computing Classification System (1998): F.2.1, G.4.
Keywords: Isomorphisms, Graphs, Binary Matrices, Combinatorial Objects
@article{SJC_2014_8_4_a1,
     author = {Bouyukliev, Iliya and Dzhumalieva-Stoeva, Mariya},
     title = {Representing {Equivalence} {Problems} for {Combinatorial} {Objects}},
     journal = {Serdica Journal of Computing},
     pages = {327--354},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2014_8_4_a1/}
}
TY  - JOUR
AU  - Bouyukliev, Iliya
AU  - Dzhumalieva-Stoeva, Mariya
TI  - Representing Equivalence Problems for Combinatorial Objects
JO  - Serdica Journal of Computing
PY  - 2014
SP  - 327
EP  - 354
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2014_8_4_a1/
LA  - en
ID  - SJC_2014_8_4_a1
ER  - 
%0 Journal Article
%A Bouyukliev, Iliya
%A Dzhumalieva-Stoeva, Mariya
%T Representing Equivalence Problems for Combinatorial Objects
%J Serdica Journal of Computing
%D 2014
%P 327-354
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2014_8_4_a1/
%G en
%F SJC_2014_8_4_a1
Bouyukliev, Iliya; Dzhumalieva-Stoeva, Mariya. Representing Equivalence Problems for Combinatorial Objects. Serdica Journal of Computing, Tome 8 (2014) no. 4, pp. 327-354. http://geodesic.mathdoc.fr/item/SJC_2014_8_4_a1/