Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences
Serdica Journal of Computing, Tome 8 (2014) no. 1, pp. 29-46.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In 1971 using pseudo-divisions - that is, by working in Z[x] - Brown and Traub computed Euclid’s polynomial remainder sequences (prs’s) and (proper) subresultant prs’s using sylvester1, the most widely known form of Sylvester’s matrix, whose determinant defines the resultant of two polynomials. In this paper we use, for the first time in the literature, the Pell-Gordon Theorem of 1917, and sylvester2, a little known form of Sylvester’s matrix of 1853 to initially compute Sturm sequences in Z[x] without pseudodivisions - that is, by working in Q[x]. We then extend our work in Q[x] and, despite the fact that the absolute value of the determinant of sylvester2 equals the absolute value of the resultant, we construct modified subresultant prs’s, which may differ from the proper ones only in sign.
Keywords: Polynomials, Real Roots, Sturm Sequences, Sylvester’s Matrices, Matrix Triangularization
@article{SJC_2014_8_1_a2,
     author = {Akritas, Alkiviadis and Malaschonok, Gennadi and Vigklas, Panagiotis},
     title = {Sturm {Sequences} and {Modified} {Subresultant} {Polynomial} {Remainder} {Sequences}},
     journal = {Serdica Journal of Computing},
     pages = {29--46},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2014_8_1_a2/}
}
TY  - JOUR
AU  - Akritas, Alkiviadis
AU  - Malaschonok, Gennadi
AU  - Vigklas, Panagiotis
TI  - Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences
JO  - Serdica Journal of Computing
PY  - 2014
SP  - 29
EP  - 46
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2014_8_1_a2/
LA  - en
ID  - SJC_2014_8_1_a2
ER  - 
%0 Journal Article
%A Akritas, Alkiviadis
%A Malaschonok, Gennadi
%A Vigklas, Panagiotis
%T Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences
%J Serdica Journal of Computing
%D 2014
%P 29-46
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2014_8_1_a2/
%G en
%F SJC_2014_8_1_a2
Akritas, Alkiviadis; Malaschonok, Gennadi; Vigklas, Panagiotis. Sturm Sequences and Modified Subresultant Polynomial Remainder Sequences. Serdica Journal of Computing, Tome 8 (2014) no. 1, pp. 29-46. http://geodesic.mathdoc.fr/item/SJC_2014_8_1_a2/