Hausdorff Approximation of Functions Different from Zero at One Point - Implementation in Programming Environment Mathematica
Serdica Journal of Computing, Tome 7 (2013) no. 2, pp. 135-152
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Moduli for numerical finding of the polynomial of the best Hausdorff approximation of the functions which differs from zero at just one point or having one jump and partially constant in programming environment MATHEMATICA are proposed. They are tested for practically important functions and the results are graphically illustrated. These moduli can be used for scientific research as well in teaching process of Approximation theory and its application.
Keywords:
Hausdorff Distance, Best Approximation
@article{SJC_2013_7_2_a2,
author = {Kyurkchiev, Nikolay and Andreev, Andrey},
title = {Hausdorff {Approximation} of {Functions} {Different} from {Zero} at {One} {Point} - {Implementation} in {Programming} {Environment} {Mathematica}},
journal = {Serdica Journal of Computing},
pages = {135--152},
year = {2013},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2013_7_2_a2/}
}
TY - JOUR AU - Kyurkchiev, Nikolay AU - Andreev, Andrey TI - Hausdorff Approximation of Functions Different from Zero at One Point - Implementation in Programming Environment Mathematica JO - Serdica Journal of Computing PY - 2013 SP - 135 EP - 152 VL - 7 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJC_2013_7_2_a2/ LA - en ID - SJC_2013_7_2_a2 ER -
%0 Journal Article %A Kyurkchiev, Nikolay %A Andreev, Andrey %T Hausdorff Approximation of Functions Different from Zero at One Point - Implementation in Programming Environment Mathematica %J Serdica Journal of Computing %D 2013 %P 135-152 %V 7 %N 2 %U http://geodesic.mathdoc.fr/item/SJC_2013_7_2_a2/ %G en %F SJC_2013_7_2_a2
Kyurkchiev, Nikolay; Andreev, Andrey. Hausdorff Approximation of Functions Different from Zero at One Point - Implementation in Programming Environment Mathematica. Serdica Journal of Computing, Tome 7 (2013) no. 2, pp. 135-152. http://geodesic.mathdoc.fr/item/SJC_2013_7_2_a2/