Finite Symmetric Functions with Non-Trivial Arity Gap
Serdica Journal of Computing, Tome 6 (2012) no. 4, pp. 419-436
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Given an n-ary k-valued function f, gap(f) denotes the essential arity gap of f which is the minimal number of essential variables in f
which become fictive when identifying any two distinct essential variables in f.
In the present paper we study the properties of the symmetric function
with non-trivial arity gap (2 ≤ gap(f)). We prove several results concerning
decomposition of the symmetric functions with non-trivial arity gap with
its minors or subfunctions. We show that all non-empty sets of essential
variables in symmetric functions with non-trivial arity gap are separable. ACM Computing Classification System (1998): G.2.0.
Keywords:
Symmetric Function, Essential Variable, Subfunction, Identification Minor, Essential Arity Gap, Gap Index, Separable Set
@article{SJC_2012_6_4_a4,
author = {Shtrakov, Slavcho and Koppitz, J\"org},
title = {Finite {Symmetric} {Functions} with {Non-Trivial} {Arity} {Gap}},
journal = {Serdica Journal of Computing},
pages = {419--436},
year = {2012},
volume = {6},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2012_6_4_a4/}
}
Shtrakov, Slavcho; Koppitz, Jörg. Finite Symmetric Functions with Non-Trivial Arity Gap. Serdica Journal of Computing, Tome 6 (2012) no. 4, pp. 419-436. http://geodesic.mathdoc.fr/item/SJC_2012_6_4_a4/