A Mixed Integer Quadratic Programming Model for the Low Autocorrelation Binary Sequence Problem
Serdica Journal of Computing, Tome 6 (2012) no. 4, pp. 385-400.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper the low autocorrelation binary sequence problem (LABSP) is modeled as a mixed integer quadratic programming (MIQP) problem and proof of the model’s validity is given. Since the MIQP model is semidefinite, general optimization solvers can be used, and converge in a finite number of iterations. The experimental results show that IQP solvers, based on this MIQP formulation, are capable of optimally solving general/skew-symmetric LABSP instances of up to 30/51 elements in a moderate time. ACM Computing Classification System (1998): G.1.6, I.2.8.
Keywords: Integer Programming, Quadratic Programming, Low Autocorrelation Binary Sequence Problem
@article{SJC_2012_6_4_a1,
     author = {Kratica, Jozef},
     title = {A {Mixed} {Integer} {Quadratic} {Programming} {Model} for the {Low} {Autocorrelation} {Binary} {Sequence} {Problem}},
     journal = {Serdica Journal of Computing},
     pages = {385--400},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2012_6_4_a1/}
}
TY  - JOUR
AU  - Kratica, Jozef
TI  - A Mixed Integer Quadratic Programming Model for the Low Autocorrelation Binary Sequence Problem
JO  - Serdica Journal of Computing
PY  - 2012
SP  - 385
EP  - 400
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2012_6_4_a1/
LA  - en
ID  - SJC_2012_6_4_a1
ER  - 
%0 Journal Article
%A Kratica, Jozef
%T A Mixed Integer Quadratic Programming Model for the Low Autocorrelation Binary Sequence Problem
%J Serdica Journal of Computing
%D 2012
%P 385-400
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2012_6_4_a1/
%G en
%F SJC_2012_6_4_a1
Kratica, Jozef. A Mixed Integer Quadratic Programming Model for the Low Autocorrelation Binary Sequence Problem. Serdica Journal of Computing, Tome 6 (2012) no. 4, pp. 385-400. http://geodesic.mathdoc.fr/item/SJC_2012_6_4_a1/