A Mixed Integer Quadratic Programming Model for the Low Autocorrelation Binary Sequence Problem
Serdica Journal of Computing, Tome 6 (2012) no. 4, pp. 385-400
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this paper the low autocorrelation binary sequence problem (LABSP) is modeled as a mixed integer quadratic programming (MIQP)
problem and proof of the model’s validity is given. Since the MIQP model is semidefinite, general optimization solvers can be used, and converge in a finite number of iterations. The experimental results show that IQP solvers, based on this MIQP formulation, are capable of optimally solving general/skew-symmetric LABSP instances of up to 30/51 elements in a moderate time. ACM Computing Classification System (1998): G.1.6, I.2.8.
Keywords:
Integer Programming, Quadratic Programming, Low Autocorrelation Binary Sequence Problem
@article{SJC_2012_6_4_a1,
author = {Kratica, Jozef},
title = {A {Mixed} {Integer} {Quadratic} {Programming} {Model} for the {Low} {Autocorrelation} {Binary} {Sequence} {Problem}},
journal = {Serdica Journal of Computing},
pages = {385--400},
year = {2012},
volume = {6},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2012_6_4_a1/}
}
Kratica, Jozef. A Mixed Integer Quadratic Programming Model for the Low Autocorrelation Binary Sequence Problem. Serdica Journal of Computing, Tome 6 (2012) no. 4, pp. 385-400. http://geodesic.mathdoc.fr/item/SJC_2012_6_4_a1/