A Necessary and Sufficient Condition for the Existence of an (n,r)-arc in PG(2,q) and Its Applications
Serdica Journal of Computing, Tome 6 (2012) no. 3, pp. 253-266.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let q be a prime or a prime power ≥ 3. The purpose of this paper is to give a necessary and sufficient condition for the existence of an (n, r)-arc in PG(2, q ) for given integers n, r and q using the geometric structure of points and lines in PG(2, q ) for n > r ≥ 3. Using the geometric method and a computer, it is shown that there exists no (34, 3) arc in PG(2, 17), equivalently, there exists no [34, 3, 31] 17 code.
Keywords: (n, r)-arcs, Projective Plane, Linear Codes
@article{SJC_2012_6_3_a0,
     author = {Hamada, Noboru and Maruta, Tatsuya and Oya, Yusuke},
     title = {A {Necessary} and {Sufficient} {Condition} for the {Existence} of an (n,r)-arc in {PG(2,q)} and {Its} {Applications}},
     journal = {Serdica Journal of Computing},
     pages = {253--266},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2012_6_3_a0/}
}
TY  - JOUR
AU  - Hamada, Noboru
AU  - Maruta, Tatsuya
AU  - Oya, Yusuke
TI  - A Necessary and Sufficient Condition for the Existence of an (n,r)-arc in PG(2,q) and Its Applications
JO  - Serdica Journal of Computing
PY  - 2012
SP  - 253
EP  - 266
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2012_6_3_a0/
LA  - en
ID  - SJC_2012_6_3_a0
ER  - 
%0 Journal Article
%A Hamada, Noboru
%A Maruta, Tatsuya
%A Oya, Yusuke
%T A Necessary and Sufficient Condition for the Existence of an (n,r)-arc in PG(2,q) and Its Applications
%J Serdica Journal of Computing
%D 2012
%P 253-266
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2012_6_3_a0/
%G en
%F SJC_2012_6_3_a0
Hamada, Noboru; Maruta, Tatsuya; Oya, Yusuke. A Necessary and Sufficient Condition for the Existence of an (n,r)-arc in PG(2,q) and Its Applications. Serdica Journal of Computing, Tome 6 (2012) no. 3, pp. 253-266. http://geodesic.mathdoc.fr/item/SJC_2012_6_3_a0/