A Necessary and Sufficient Condition for the Existence of an (n,r)-arc in PG(2,q) and Its Applications
Serdica Journal of Computing, Tome 6 (2012) no. 3, pp. 253-266
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Let q be a prime or a prime power ≥ 3. The purpose of this
paper is to give a necessary and sufficient condition for the existence of
an (n, r)-arc in PG(2, q ) for given integers n, r and q using the geometric
structure of points and lines in PG(2, q ) for n > r ≥ 3. Using the geometric
method and a computer, it is shown that there exists no (34, 3) arc in
PG(2, 17), equivalently, there exists no [34, 3, 31] 17 code.
Keywords:
(n, r)-arcs, Projective Plane, Linear Codes
@article{SJC_2012_6_3_a0,
author = {Hamada, Noboru and Maruta, Tatsuya and Oya, Yusuke},
title = {A {Necessary} and {Sufficient} {Condition} for the {Existence} of an (n,r)-arc in {PG(2,q)} and {Its} {Applications}},
journal = {Serdica Journal of Computing},
pages = {253--266},
year = {2012},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2012_6_3_a0/}
}
TY - JOUR AU - Hamada, Noboru AU - Maruta, Tatsuya AU - Oya, Yusuke TI - A Necessary and Sufficient Condition for the Existence of an (n,r)-arc in PG(2,q) and Its Applications JO - Serdica Journal of Computing PY - 2012 SP - 253 EP - 266 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/SJC_2012_6_3_a0/ LA - en ID - SJC_2012_6_3_a0 ER -
%0 Journal Article %A Hamada, Noboru %A Maruta, Tatsuya %A Oya, Yusuke %T A Necessary and Sufficient Condition for the Existence of an (n,r)-arc in PG(2,q) and Its Applications %J Serdica Journal of Computing %D 2012 %P 253-266 %V 6 %N 3 %U http://geodesic.mathdoc.fr/item/SJC_2012_6_3_a0/ %G en %F SJC_2012_6_3_a0
Hamada, Noboru; Maruta, Tatsuya; Oya, Yusuke. A Necessary and Sufficient Condition for the Existence of an (n,r)-arc in PG(2,q) and Its Applications. Serdica Journal of Computing, Tome 6 (2012) no. 3, pp. 253-266. http://geodesic.mathdoc.fr/item/SJC_2012_6_3_a0/