Note on an Improvement of the Griesmer Bound for q-ary Linear Codes
Serdica Journal of Computing, Tome 5 (2011) no. 3, pp. 199-206
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
Let nq(k, d) denote the smallest value of n for which an [n, k, d]q code exists for given integers k and d with k ≥ 3, 1 ≤ d ≤ q^(k−1)
and a prime or a prime power q. The purpose of this note is to show that there exists a series of the functions h3,q, h4,q, ..., hk,q
such that nq(k, d) can be expressed.
Keywords:
Linear Codes, Griesmer Bound
@article{SJC_2011_5_3_a0,
author = {Hamada, Noboru and Maruta, Tatsuya},
title = {Note on an {Improvement} of the {Griesmer} {Bound} for q-ary {Linear} {Codes}},
journal = {Serdica Journal of Computing},
pages = {199--206},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2011_5_3_a0/}
}
TY - JOUR AU - Hamada, Noboru AU - Maruta, Tatsuya TI - Note on an Improvement of the Griesmer Bound for q-ary Linear Codes JO - Serdica Journal of Computing PY - 2011 SP - 199 EP - 206 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJC_2011_5_3_a0/ LA - en ID - SJC_2011_5_3_a0 ER -
Hamada, Noboru; Maruta, Tatsuya. Note on an Improvement of the Griesmer Bound for q-ary Linear Codes. Serdica Journal of Computing, Tome 5 (2011) no. 3, pp. 199-206. http://geodesic.mathdoc.fr/item/SJC_2011_5_3_a0/