Note on an Improvement of the Griesmer Bound for q-ary Linear Codes
Serdica Journal of Computing, Tome 5 (2011) no. 3, pp. 199-206.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let nq(k, d) denote the smallest value of n for which an [n, k, d]q code exists for given integers k and d with k ≥ 3, 1 ≤ d ≤ q^(k−1) and a prime or a prime power q. The purpose of this note is to show that there exists a series of the functions h3,q, h4,q, ..., hk,q such that nq(k, d) can be expressed.
Keywords: Linear Codes, Griesmer Bound
@article{SJC_2011_5_3_a0,
     author = {Hamada, Noboru and Maruta, Tatsuya},
     title = {Note on an {Improvement} of the {Griesmer} {Bound} for q-ary {Linear} {Codes}},
     journal = {Serdica Journal of Computing},
     pages = {199--206},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2011_5_3_a0/}
}
TY  - JOUR
AU  - Hamada, Noboru
AU  - Maruta, Tatsuya
TI  - Note on an Improvement of the Griesmer Bound for q-ary Linear Codes
JO  - Serdica Journal of Computing
PY  - 2011
SP  - 199
EP  - 206
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2011_5_3_a0/
LA  - en
ID  - SJC_2011_5_3_a0
ER  - 
%0 Journal Article
%A Hamada, Noboru
%A Maruta, Tatsuya
%T Note on an Improvement of the Griesmer Bound for q-ary Linear Codes
%J Serdica Journal of Computing
%D 2011
%P 199-206
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2011_5_3_a0/
%G en
%F SJC_2011_5_3_a0
Hamada, Noboru; Maruta, Tatsuya. Note on an Improvement of the Griesmer Bound for q-ary Linear Codes. Serdica Journal of Computing, Tome 5 (2011) no. 3, pp. 199-206. http://geodesic.mathdoc.fr/item/SJC_2011_5_3_a0/