The Nonexistence of [132, 6, 86]3 Codes and [135, 6, 88]3 Codes
Serdica Journal of Computing, Tome 5 (2011) no. 2, pp. 117-128
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
We prove the nonexistence of [g3(6, d), 6, d]3 codes for d = 86, 87, 88, where g3(k, d) = ∑⌈d/3i⌉ and i=0 ... k−1. This determines n3(6, d) for d = 86, 87, 88, where nq(k, d) is the minimum length n for which an [n, k, d]q code exists.
Keywords:
Ternary Linear Codes, Optimal Codes, Projective Geometry
@article{SJC_2011_5_2_a1,
author = {Oya, Yusuke},
title = {The {Nonexistence} of [132, 6, 86]3 {Codes} and [135, 6, 88]3 {Codes}},
journal = {Serdica Journal of Computing},
pages = {117--128},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2011_5_2_a1/}
}
Oya, Yusuke. The Nonexistence of [132, 6, 86]3 Codes and [135, 6, 88]3 Codes. Serdica Journal of Computing, Tome 5 (2011) no. 2, pp. 117-128. http://geodesic.mathdoc.fr/item/SJC_2011_5_2_a1/