The Nonexistence of [132, 6, 86]3 Codes and [135, 6, 88]3 Codes
Serdica Journal of Computing, Tome 5 (2011) no. 2, pp. 117-128.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We prove the nonexistence of [g3(6, d), 6, d]3 codes for d = 86, 87, 88, where g3(k, d) = ∑⌈d/3i⌉ and i=0 ... k−1. This determines n3(6, d) for d = 86, 87, 88, where nq(k, d) is the minimum length n for which an [n, k, d]q code exists.
Keywords: Ternary Linear Codes, Optimal Codes, Projective Geometry
@article{SJC_2011_5_2_a1,
     author = {Oya, Yusuke},
     title = {The {Nonexistence} of [132, 6, 86]3 {Codes} and [135, 6, 88]3 {Codes}},
     journal = {Serdica Journal of Computing},
     pages = {117--128},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2011_5_2_a1/}
}
TY  - JOUR
AU  - Oya, Yusuke
TI  - The Nonexistence of [132, 6, 86]3 Codes and [135, 6, 88]3 Codes
JO  - Serdica Journal of Computing
PY  - 2011
SP  - 117
EP  - 128
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2011_5_2_a1/
LA  - en
ID  - SJC_2011_5_2_a1
ER  - 
%0 Journal Article
%A Oya, Yusuke
%T The Nonexistence of [132, 6, 86]3 Codes and [135, 6, 88]3 Codes
%J Serdica Journal of Computing
%D 2011
%P 117-128
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2011_5_2_a1/
%G en
%F SJC_2011_5_2_a1
Oya, Yusuke. The Nonexistence of [132, 6, 86]3 Codes and [135, 6, 88]3 Codes. Serdica Journal of Computing, Tome 5 (2011) no. 2, pp. 117-128. http://geodesic.mathdoc.fr/item/SJC_2011_5_2_a1/