The Eccentric Connectivity Polynomial of some Graph Operations
Serdica Journal of Computing, Tome 5 (2011) no. 2, pp. 101-116
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
The eccentric connectivity index of a graph G, ξ^C, was proposed
by Sharma, Goswami and Madan. It is defined as ξ^C(G) =
∑ u ∈ V(G) degG(u)εG(u), where degG(u) denotes the degree of the vertex x
in G and εG(u) = Max{d(u, x) | x ∈ V (G)}. The eccentric connectivity
polynomial is a polynomial version of this topological index. In this paper,
exact formulas for the eccentric connectivity polynomial of Cartesian
product, symmetric difference, disjunction and join of graphs are presented.
Keywords:
Graph Operation, Topological Index, Eccentric Connectivity Polynomial
@article{SJC_2011_5_2_a0,
author = {Ashrafi, A. and Ghorbani, M. and Hossein-Zadeh, M.},
title = {The {Eccentric} {Connectivity} {Polynomial} of some {Graph} {Operations}},
journal = {Serdica Journal of Computing},
pages = {101--116},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2011_5_2_a0/}
}
TY - JOUR AU - Ashrafi, A. AU - Ghorbani, M. AU - Hossein-Zadeh, M. TI - The Eccentric Connectivity Polynomial of some Graph Operations JO - Serdica Journal of Computing PY - 2011 SP - 101 EP - 116 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJC_2011_5_2_a0/ LA - en ID - SJC_2011_5_2_a0 ER -
Ashrafi, A.; Ghorbani, M.; Hossein-Zadeh, M. The Eccentric Connectivity Polynomial of some Graph Operations. Serdica Journal of Computing, Tome 5 (2011) no. 2, pp. 101-116. http://geodesic.mathdoc.fr/item/SJC_2011_5_2_a0/