The Divisibility Modulo 4 of Kloosterman Sums over Finite Fields of Characteristic 3
Serdica Journal of Computing, Tome 5 (2011) no. 1, pp. 1-14
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Recently Garashuk and Lisonek evaluated Kloosterman sums
K (a) modulo 4 over a finite field F3m in the case of even K (a). They posed it as an open
problem to characterize elements a in F3m for which K (a) ≡ 1 (mod4) and K (a) ≡ 3 (mod4). In
this paper, we will give an answer to this problem. The result allows us to count the number of
elements a in F3m belonging to each of these two classes.
Keywords:
Kloosterman Sums, Divisibility, Exponential Sum
@article{SJC_2011_5_1_a0,
author = {Sin, Changhyon},
title = {The {Divisibility} {Modulo} 4 of {Kloosterman} {Sums} over {Finite} {Fields} of {Characteristic} 3},
journal = {Serdica Journal of Computing},
pages = {1--14},
year = {2011},
volume = {5},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2011_5_1_a0/}
}
Sin, Changhyon. The Divisibility Modulo 4 of Kloosterman Sums over Finite Fields of Characteristic 3. Serdica Journal of Computing, Tome 5 (2011) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/SJC_2011_5_1_a0/