CAPS in Z(2,n)
Serdica Journal of Computing, Tome 3 (2009) no. 2, pp. 159-178.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We consider point sets in (Z^2,n) where no three points are on a line – also called caps or arcs. For the determination of caps with maximum cardinality and complete caps with minimum cardinality we provide integer linear programming formulations and identify some values for small n.
Keywords: Caps, Arcs, Affine Geometry, Collinearity, Integer Programming, Rings, Complete Caps
@article{SJC_2009_3_2_a2,
     author = {Kurz, Sascha},
     title = {CAPS in {Z(2,n)}},
     journal = {Serdica Journal of Computing},
     pages = {159--178},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2009_3_2_a2/}
}
TY  - JOUR
AU  - Kurz, Sascha
TI  - CAPS in Z(2,n)
JO  - Serdica Journal of Computing
PY  - 2009
SP  - 159
EP  - 178
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2009_3_2_a2/
LA  - en
ID  - SJC_2009_3_2_a2
ER  - 
%0 Journal Article
%A Kurz, Sascha
%T CAPS in Z(2,n)
%J Serdica Journal of Computing
%D 2009
%P 159-178
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2009_3_2_a2/
%G en
%F SJC_2009_3_2_a2
Kurz, Sascha. CAPS in Z(2,n). Serdica Journal of Computing, Tome 3 (2009) no. 2, pp. 159-178. http://geodesic.mathdoc.fr/item/SJC_2009_3_2_a2/