On the Asymptotic Behavior of the Ratio between the Numbers of Binary Primitive and Irreducible Polynomials
Serdica Journal of Computing, Tome 2 (2008) no. 3, pp. 239-248
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper, we study the ratio θ(n) = λ2 (n) / ψ2 (n), where λ2 (n) is
the number of primitive polynomials and ψ2 (n) is the number of irreducible
polynomials in GF (2)[x] of degree n. Let n = ∏ pi^ri, i=1,..l
be the prime factorization of n. We show that, for fixed l and ri , θ(n) is close to 1 and θ(2n) is
not less than 2/3 for sufficiently large primes pi . We also describe an infinite
series of values ns such that θ(ns ) is strictly less than 1/2.
Keywords:
Finite Fields, Primitive and Irreducible Polynomials
@article{SJC_2008_2_3_a1,
author = {Borissov, Yuri and Ho Lee, Moon and Nikova, Svetla},
title = {On the {Asymptotic} {Behavior} of the {Ratio} between the {Numbers} of {Binary} {Primitive} and {Irreducible} {Polynomials}},
journal = {Serdica Journal of Computing},
pages = {239--248},
publisher = {mathdoc},
volume = {2},
number = {3},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2008_2_3_a1/}
}
TY - JOUR AU - Borissov, Yuri AU - Ho Lee, Moon AU - Nikova, Svetla TI - On the Asymptotic Behavior of the Ratio between the Numbers of Binary Primitive and Irreducible Polynomials JO - Serdica Journal of Computing PY - 2008 SP - 239 EP - 248 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJC_2008_2_3_a1/ LA - en ID - SJC_2008_2_3_a1 ER -
%0 Journal Article %A Borissov, Yuri %A Ho Lee, Moon %A Nikova, Svetla %T On the Asymptotic Behavior of the Ratio between the Numbers of Binary Primitive and Irreducible Polynomials %J Serdica Journal of Computing %D 2008 %P 239-248 %V 2 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJC_2008_2_3_a1/ %G en %F SJC_2008_2_3_a1
Borissov, Yuri; Ho Lee, Moon; Nikova, Svetla. On the Asymptotic Behavior of the Ratio between the Numbers of Binary Primitive and Irreducible Polynomials. Serdica Journal of Computing, Tome 2 (2008) no. 3, pp. 239-248. http://geodesic.mathdoc.fr/item/SJC_2008_2_3_a1/