On the Vertex Separation of Maximal Outerplanar Graphs
Serdica Journal of Computing, Tome 2 (2008) no. 3, pp. 207-238
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
We investigate the NP-complete problem Vertex Separation (VS) on Maximal Outerplanar Graphs (mops). We formulate and prove a “main theorem for mops”, a necessary and sufficient condition for the vertex
separation of a mop being k. The main theorem reduces the vertex separation of mops to a special kind of stretchability, one that we call affixability, of submops.
Keywords:
Algorithmic Graph Theory, Computational Complexity, Vertex Separation, Linear Layout, Layout Stretchabilty, Maximal Outerplanar Graph
@article{SJC_2008_2_3_a0,
author = {Markov, Minko},
title = {On the {Vertex} {Separation} of {Maximal} {Outerplanar} {Graphs}},
journal = {Serdica Journal of Computing},
pages = {207--238},
publisher = {mathdoc},
volume = {2},
number = {3},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJC_2008_2_3_a0/}
}
Markov, Minko. On the Vertex Separation of Maximal Outerplanar Graphs. Serdica Journal of Computing, Tome 2 (2008) no. 3, pp. 207-238. http://geodesic.mathdoc.fr/item/SJC_2008_2_3_a0/