On the Generation of Heronian Triangles
Serdica Journal of Computing, Tome 2 (2008) no. 2, pp. 181-196.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We describe several algorithms for the generation of integer Heronian triangles with diameter at most n. Two of them have running time O(n^(2+ε)). We enumerate all integer Heronian triangles for n ≤ 600000 and apply the complete list on some related problems.
Keywords: Heron Triangles, System of Diophantine Equations, System of Diophantine Equations, Triangles with Rational Area, Perfect Pyramids
@article{SJC_2008_2_2_a5,
     author = {Kurz, Sascha},
     title = {On the {Generation} of {Heronian} {Triangles}},
     journal = {Serdica Journal of Computing},
     pages = {181--196},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2008_2_2_a5/}
}
TY  - JOUR
AU  - Kurz, Sascha
TI  - On the Generation of Heronian Triangles
JO  - Serdica Journal of Computing
PY  - 2008
SP  - 181
EP  - 196
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2008_2_2_a5/
LA  - en
ID  - SJC_2008_2_2_a5
ER  - 
%0 Journal Article
%A Kurz, Sascha
%T On the Generation of Heronian Triangles
%J Serdica Journal of Computing
%D 2008
%P 181-196
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2008_2_2_a5/
%G en
%F SJC_2008_2_2_a5
Kurz, Sascha. On the Generation of Heronian Triangles. Serdica Journal of Computing, Tome 2 (2008) no. 2, pp. 181-196. http://geodesic.mathdoc.fr/item/SJC_2008_2_2_a5/