Jacobi Beta Ensemble and $b$-Hurwitz Numbers
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We express correlators of the Jacobi $\beta$ ensemble in terms of (a special case of) $b$-Hurwitz numbers, a deformation of Hurwitz numbers recently introduced by Chapuy and Dołȩga. The proof relies on Kadell's generalization of the Selberg integral. The Laguerre limit is also considered. All the relevant $b$-Hurwitz numbers are interpreted (following Bonzom, Chapuy, and Dołȩga) in terms of colored monotone Hurwitz maps.
Keywords: Jack polynomials, Hurwitz numbers, combinatorial maps.
Mots-clés : beta ensembles
@article{SIGMA_2023_19_a99,
     author = {Giulio Ruzza},
     title = {Jacobi {Beta} {Ensemble} and $b${-Hurwitz} {Numbers}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a99/}
}
TY  - JOUR
AU  - Giulio Ruzza
TI  - Jacobi Beta Ensemble and $b$-Hurwitz Numbers
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a99/
LA  - en
ID  - SIGMA_2023_19_a99
ER  - 
%0 Journal Article
%A Giulio Ruzza
%T Jacobi Beta Ensemble and $b$-Hurwitz Numbers
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a99/
%G en
%F SIGMA_2023_19_a99
Giulio Ruzza. Jacobi Beta Ensemble and $b$-Hurwitz Numbers. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a99/

[1] Ambjørn J., Makeenko Yu.M., “Properties of loop equations for the Hermitian matrix model and for two-dimensional quantum gravity”, Modern Phys. Lett. A, 5 (1990), 1753–1763 | DOI | MR | Zbl

[2] Bertola M., Harnad J., “Rationally weighted Hurwitz numbers, Meijer $G$-functions and matrix integrals”, J. Math. Phys., 60 (2019), 103504, 15 pp., arXiv: 1904.03770 | DOI | MR | Zbl

[3] Bonzom V., Chapuy G., Dołȩga M., “$b$-monotone Hurwitz numbers: Virasoro constraints, BKP hierarchy, and $O(N)$-BGW integral”, Int. Math. Res. Not., 2023 (2023), 12172–12230, arXiv: 2109.01499 | DOI | MR | Zbl

[4] Borot G., Eynard B., Mulase M., Safnuk B., “A matrix model for simple Hurwitz numbers, and topological recursion”, J. Geom. Phys., 61 (2011), 522–540, arXiv: 0906.1206 | DOI | MR | Zbl

[5] Borot G., Guionnet A., “Asymptotic expansion of $\beta$ matrix models in the one-cut regime”, Comm. Math. Phys., 317 (2013), 447–483, arXiv: 1107.1167 | DOI | MR | Zbl

[6] Chapuy G., Dołȩga M., “Non-orientable branched coverings, $b$-Hurwitz numbers, and positivity for multiparametric Jack expansions”, Adv. Math., 409 (2022), 108645, 72 pp., arXiv: 2004.07824 | DOI | MR | Zbl

[7] Chekhov L., Eynard B., “Matrix eigenvalue model: Feynman graph technique for all genera”, J. High Energy Phys., 2006:12 (2006), 026, 29 pp., arXiv: math-ph/0604014 | DOI | MR | Zbl

[8] Cunden F.D., Dahlqvist A., O'Connell N., “Integer moments of complex Wishart matrices and Hurwitz numbers”, Ann. Inst. Henri Poincaré D, 8 (2021), 243–268, arXiv: 1809.10033 | DOI | MR | Zbl

[9] Deift P.A., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, New York University, Courant Institute of Mathematical Sciences, New York, 1999 | MR

[10] Dijkgraaf R., “Mirror symmetry and elliptic curves”, The Moduli Space of Curves (Texel Island, 1994), Progr. Math., 129, Birkhäuser, Boston, MA, 1995, 149–163 | DOI | MR | Zbl

[11] Dumitriu I., Edelman A., “Matrix models for beta ensembles”, J. Math. Phys., 43 (2002), 5830–5847, arXiv: math-ph/0206043 | DOI | MR | Zbl

[12] Edelman A., Sutton B.D., “The beta-Jacobi matrix model, the CS decomposition, and generalized singular value problems”, Found. Comput. Math., 8 (2008), 259–285 | DOI | MR | Zbl

[13] Ekedahl T., Lando S., Shapiro M., Vainshtein A., “Hurwitz numbers and intersections on moduli spaces of curves”, Invent. Math., 146 (2001), 297–327, arXiv: math.AG/0004096 | DOI | MR | Zbl

[14] Etingof P., Golberg O., Hensel S., Liu T., Schwendner A., Vaintrob D., Yudovina E., Introduction to representation theory (with historical interludes by Slava Gerovitch), Stud. Math. Libr., 59, American Mathematical Society, Providence, RI, 2011 | DOI | MR | Zbl

[15] Forrester P.J., Log-gases and random matrices, London Math. Soc. Monogr. Ser., 34, Princeton University Press, Princeton, NJ, 2010 | DOI | MR | Zbl

[16] Forrester P.J., Rahman A.A., Witte N.S., “Large $N$ expansions for the Laguerre and Jacobi $\beta$-ensembles from the loop equations”, J. Math. Phys., 58 (2017), 113303, 25 pp., arXiv: 1707.04842 | DOI | MR | Zbl

[17] Gisonni M., Grava T., Ruzza G., “Laguerre ensemble: correlators, Hurwitz numbers and Hodge integrals”, Ann. Henri Poincaré, 21 (2020), 3285–3339, arXiv: 1912.00525 | DOI | MR | Zbl

[18] Gisonni M., Grava T., Ruzza G., “Jacobi ensemble, Hurwitz numbers and Wilson polynomials”, Lett. Math. Phys., 111 (2021), 67, 38 pp., arXiv: 2011.04082 | DOI | MR | Zbl

[19] Goulden I.P., Guay-Paquet M., Novak J., “Monotone Hurwitz numbers and the HCIZ integral”, Ann. Math. Blaise Pascal, 21 (2014), 71–89, arXiv: 1107.1015 | DOI | MR | Zbl

[20] Goulden I.P., Jackson D.M., “Connection coefficients, matchings, maps and combinatorial conjectures for Jack symmetric functions”, Trans. Amer. Math. Soc., 348 (1996), 873–892 | DOI | MR | Zbl

[21] Graczyk P., Letac G., Massam H., “The complex Wishart distribution and the symmetric group”, Ann. Statist., 31 (2003), 287–309 | DOI | MR | Zbl

[22] Graczyk P., Letac G., Massam H., “The hyperoctahedral group, symmetric group representations and the moments of the real Wishart distribution”, J. Theoret. Probab., 18 (2005), 1–42 | DOI | MR | Zbl

[23] Guay-Paquet M., Harnad J., “2D Toda $\tau$-functions as combinatorial generating functions”, Lett. Math. Phys., 105 (2015), 827–852, arXiv: 1405.6303 | DOI | MR | Zbl

[24] Hanlon P.J., Stanley R.P., Stembridge J.R., “Some combinatorial aspects of the spectra of normally distributed random matrices”, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., 138, American Mathematical Society, Providence, RI, 1992, 151–174 | DOI | MR | Zbl

[25] Harnad J., Orlov A.Yu., “Hypergeometric $\tau$-functions, Hurwitz numbers and enumeration of paths”, Comm. Math. Phys., 338 (2015), 267–284, arXiv: 1407.7800 | DOI | MR | Zbl

[26] Hurwitz A., “Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten”, Math. Ann., 39 (1891), 1–60 | DOI | MR

[27] Itzykson C., Zuber J.-B., “Matrix integration and combinatorics of modular groups”, Comm. Math. Phys., 134 (1990), 197–207 | DOI | MR

[28] Kadell K.W.J., “The Selberg–Jack symmetric functions”, Adv. Math., 130 (1997), 33–102 | DOI | MR | Zbl

[29] Killip R., Nenciu I., “Matrix models for circular ensembles”, Int. Math. Res. Not., 2004 (2004), 2665–2701, arXiv: math.SP/0410034 | DOI | MR | Zbl

[30] Macdonald I.G., “Commuting differential operators and zonal spherical functions”, Algebraic Groups Utrecht 1986, Lecture Notes in Math., 1271, Springer, Berlin, 1987, 189–200 | DOI | MR

[31] Macdonald I.G., Symmetric functions and Hall polynomials, Oxford Math. Monogr., 2nd ed., Oxford University Press, New York, 1995 | MR | Zbl

[32] Novak J., On the complex asymptotics of the HCIZ and BGW integrals, arXiv: 2006.04304

[33] Okounkov A., “Toda equations for Hurwitz numbers”, Math. Res. Lett., 7 (2000), 447–453, arXiv: math.AG/0004128 | DOI | MR | Zbl

[34] Okounkov A., Pandharipande R., “Gromov–Witten theory, Hurwitz theory, and completed cycles”, Ann. of Math., 163 (2006), 517–560, arXiv: math.AG/0204305 | DOI | MR | Zbl

[35] Selberg A., “Remarks on a multiple integral”, Norsk Mat. Tidsskr., 26 (1944), 71–78 | MR

[36] Stanley R.P., “Some combinatorial properties of Jack symmetric functions”, Adv. Math., 77 (1989), 76–115 | DOI | MR | Zbl