@article{SIGMA_2023_19_a95,
author = {M. Filipkovska},
title = {Initial-Boundary {Value} {Problem} for the {Maxwell{\textendash}Bloch} {Equations} with an {Arbitrary} {Inhomogeneous} {Broadening} and {Periodic} {Boundary} {Function}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a95/}
}
TY - JOUR AU - M. Filipkovska TI - Initial-Boundary Value Problem for the Maxwell–Bloch Equations with an Arbitrary Inhomogeneous Broadening and Periodic Boundary Function JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a95/ LA - en ID - SIGMA_2023_19_a95 ER -
%0 Journal Article %A M. Filipkovska %T Initial-Boundary Value Problem for the Maxwell–Bloch Equations with an Arbitrary Inhomogeneous Broadening and Periodic Boundary Function %J Symmetry, integrability and geometry: methods and applications %D 2023 %V 19 %U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a95/ %G en %F SIGMA_2023_19_a95
M. Filipkovska. Initial-Boundary Value Problem for the Maxwell–Bloch Equations with an Arbitrary Inhomogeneous Broadening and Periodic Boundary Function. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a95/
[1] Ablowitz M.J., Kaup D.J., Newell A.C., “Coherent pulse propagation, a dispersive, irreversible phenomenon”, J. Math. Phys., 15 (1974), 1852–1858 | DOI
[2] Ablowitz M.J., Segur H., Solitons and the inverse scattering transform, SIAM Stud. Appl. Math., 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1981 | MR | Zbl
[3] Biondini G., Gabitov I., Kovačič G., Li S., “Inverse scattering transform for two-level systems with nonzero background”, J. Math. Phys., 60 (2019), 073510, 49 pp., arXiv: 1907.06231 | DOI | MR | Zbl
[4] Boutet de Monvel A., Kotlyarov V., “Scattering problem for the Zakharov–Shabat equations on the semi-axis”, Inverse Probl., 16 (2000), 1813–1837 | DOI | MR | Zbl
[5] Deift P.A., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, New York University, New York, 1999 | DOI | MR
[6] Filipkovska M.S., Kotlyarov V.P., “Propagation of electric field generated by periodic pumping in a stable medium of two-level atoms of the Maxwell–Bloch model”, J. Math. Phys., 61 (2020), 123502, 31 pp. | DOI | MR | Zbl
[7] Filipkovska M.S., Kotlyarov V.P., Melamedova E.A., “Maxwell–Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix Riemann–Hilbert problems”, J. Math. Phys. Anal. Geom., 13 (2017), 119–153 | DOI | MR | Zbl
[8] Fokas A.S., “A unified transform method for solving linear and certain nonlinear PDEs”, Proc. Roy. Soc. London Ser. A, 453 (1997), 1411–1443 | DOI | MR | Zbl
[9] Fokas A.S., “Integrable nonlinear evolution equations on the half-line”, Comm. Math. Phys., 230 (2002), 1–39 | DOI | MR | Zbl
[10] Gabitov I.R., Zakharov V.E., Mikhailov A.V., “Superfluorescence pulse shape”, JETP Lett., 37 (1983), 279–282
[11] Gabitov I.R., Zakharov V.E., Mikhailov A.V., “Non-linear theory of superfluorescence”, Sov. Phys. JETP, 59 (1984), 703–709
[12] Gabitov I.R., Zakharov V.E., Mikhailov A.V., “Maxwell–Bloch equation and the inverse scattering method”, Theoret. and Math. Phys., 63 (1985), 328–343 | DOI | MR
[13] Huang L., Chen Y., “Localized excitations and interactional solutions for the reduced Maxwell–Bloch equations”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 237–252, arXiv: 1712.02059 | DOI | MR | Zbl
[14] Kiselev O.M., “Solution of Goursat problem for the Maxwell–Bloch system”, Theoret. and Math. Phys., 98 (1994), 20–26 | DOI | MR | Zbl
[15] Kotlyarov V., “Complete linearization of a mixed problem to the Maxwell–Bloch equations by matrix Riemann–Hilbert problems”, J. Phys. A, 46 (2013), 285206, 24 pp., arXiv: 1301.3649 | DOI | MR | Zbl
[16] Lamb Jr. G.L., “Propagation of ultrashort optical pulses”, Phys. Lett. A, 25 (1967), 181–182 | DOI
[17] Lamb Jr. G.L., “Analytical descriptions of ultrashort optical pulse propagation in a resonant medium”, Rev. Modern Phys., 43 (1971), 99–124 | DOI | MR
[18] Lenells J., “The nonlinear steepest descent method for Riemann–Hilbert problems of low regularity”, Indiana Univ. Math. J., 66 (2017), 1287–1332, arXiv: 1501.05329 | DOI | MR | Zbl
[19] Li S., Miller P.D., “On the Maxwell–Bloch system in the sharp-line limit without solitons”, Comm. Pure Appl. Math., 77 (2024), 457–542, arXiv: 2105.13293 | DOI | MR
[20] Manakov S.V., “Propagation of ultrshort optical pulse in a two-level laser amplifier”, Sov. Phys. JETP, 56 (1982), 37–44
[21] Muskhelishvili N.I., Singular integral equations: Boundary problems of functions theory and their applications to mathematical physics, Springer, Dordrecht, 2011 | DOI | MR
[22] Spitkovskii I.M., “Factorization of measurable matrix-functions in classes $L_{p,\rho}$ with power weight”, Soviet Math., 32:5 (1988), 78–88 | MR | Zbl
[23] Wei J., Wang X., Geng X., “Periodic and rational solutions of the reduced Maxwell–Bloch equations”, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 1–14, arXiv: 1705.09881 | DOI | MR | Zbl
[24] Zakharov V.E., “Propagation of an amplifying pulse in a two-level medium”, JETP Lett., 32 (1980), 589–593
[25] Zhou X., “The Riemann–Hilbert problem and inverse scattering”, SIAM J. Math. Anal., 20 (1989), 966–986 | DOI | MR | Zbl