DG-Enhanced Hecke and KLR Algebras
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct DG-enhanced versions of the degenerate affine Hecke algebra and of the affine Hecke algebra. We extend Brundan–Kleshchev and Rouquier's isomorphism and prove that after completion DG-enhanced versions of affine Hecke algebras (degenerate or nondegenerate) are isomorphic to completed DG-enhanced versions of KLR algebras for suitably defined quivers. As a byproduct, we deduce that these DG-algebras have homologies concentrated in degree zero. These homologies are isomorphic respectively to the degenerate cyclotomic Hecke algebra and the cyclotomic Hecke algebra.
Keywords: Hecke algebra, KLR algebra, DG-algebra.
@article{SIGMA_2023_19_a94,
     author = {Ruslan Maksimau and Pedro Vaz},
     title = {DG-Enhanced {Hecke} and {KLR} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a94/}
}
TY  - JOUR
AU  - Ruslan Maksimau
AU  - Pedro Vaz
TI  - DG-Enhanced Hecke and KLR Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a94/
LA  - en
ID  - SIGMA_2023_19_a94
ER  - 
%0 Journal Article
%A Ruslan Maksimau
%A Pedro Vaz
%T DG-Enhanced Hecke and KLR Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a94/
%G en
%F SIGMA_2023_19_a94
Ruslan Maksimau; Pedro Vaz. DG-Enhanced Hecke and KLR Algebras. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a94/

[1] Brundan J., “On the definition of Kac–Moody 2-category”, Math. Ann., 364 (2016), 353–372, arXiv: 1501.00350 | DOI | MR | Zbl

[2] Brundan J., Kleshchev A., “Blocks of cyclotomic Hecke algebras and Khovanov–Lauda algebras”, Invent. Math., 178 (2009), 451–484, arXiv: 0808.2032 | DOI | MR | Zbl

[3] Brundan J., Kleshchev A., “Graded decomposition numbers for cyclotomic Hecke algebras”, Adv. Math., 222 (2009), 1883–1942, arXiv: 0901.4450 | DOI | MR | Zbl

[4] Kang S.-J., Kashiwara M., “Categorification of highest weight modules via Khovanov–Lauda–Rouquier algebras”, Invent. Math., 190 (2012), 699–742, arXiv: 1102.4677 | DOI | MR | Zbl

[5] Khovanov M., “Heisenberg algebra and a graphical calculus”, Fund. Math., 225 (2014), 169–210, arXiv: 1009.3295 | DOI | MR | Zbl

[6] Khovanov M., Lauda A.D., “A diagrammatic approach to categorification of quantum groups I”, Represent. Theory, 13 (2009), 309–347, arXiv: 0803.4121 | DOI | MR | Zbl

[7] Khovanov M., Lauda A.D., “A categorification of quantum ${\rm sl}(n)$”, Quantum Topol., 1 (2010), 1–92, arXiv: 0807.3250 | DOI | MR | Zbl

[8] Khovanov M., Lauda A.D., “A diagrammatic approach to categorification of quantum groups II”, Trans. Amer. Math. Soc., 363 (2011), 2685–2700, arXiv: 0804.2080 | DOI | MR | Zbl

[9] Kleshchev A., “Representation theory of symmetric groups and related Hecke algebras”, Bull. Amer. Math. Soc. (N. S.), 47 (2010), 419–481, arXiv: 0909.4844 | DOI | MR | Zbl

[10] Lauda A.D., “A categorification of quantum ${\rm sl}(2)$”, Adv. Math., 225 (2010), 3327–3424, arXiv: 0803.3652 | DOI | MR | Zbl

[11] Licata A., Savage A., “Hecke algebras, finite general linear groups, and Heisenberg categorification”, Quantum Topol., 4 (2013), 125–185, arXiv: 1101.0420 | DOI | MR | Zbl

[12] Maksimau R., Stroppel C., “Higher level affine Schur and Hecke algebras”, J. Pure Appl. Algebra, 225 (2021), 106442, 44 pp., arXiv: 1805.02425 | DOI | MR | Zbl

[13] Miemietz V., Stroppel C., “Affine quiver Schur algebras and $p$-adic ${\rm GL}_n$”, Selecta Math. (N. S.), 25 (2019), 32, 66 pp., arXiv: 1601.07323 | DOI | MR | Zbl

[14] Naisse G., Vaz P., “An approach to categorification of Verma modules”, Proc. Lond. Math. Soc., 117 (2018), 1181–1241, arXiv: 1603.01555 | DOI | MR | Zbl

[15] Naisse G., Vaz P., “On 2-Verma modules for quantum $\mathfrak{sl}_2$”, Selecta Math. (N. S.), 24 (2018), 3763–3821, arXiv: 1704.08205 | DOI | MR | Zbl

[16] Naisse G., Vaz P., “2-Verma modules”, J. Reine Angew. Math., 782 (2022), 43–108, arXiv: 1710.06293 | DOI | MR | Zbl

[17] Poulain d'Andecy L., Walker R., “Affine Hecke algebras and generalizations of quiver Hecke algebras of type $B$”, Proc. Edinb. Math. Soc., 63 (2020), 531–578, arXiv: 1712.05592 | DOI | MR | Zbl

[18] Rostam S., “Cyclotomic Yokonuma–Hecke algebras are cyclotomic quiver Hecke algebras”, Adv. Math., 311 (2017), 662–729, arXiv: 1603.03901 | DOI | MR | Zbl

[19] Rouquier R., “Derived equivalences and finite dimensional algebras”, International Congress of Mathematicians, v. 2, European Mathematical Society, Zürich, 2006, 191–221, arXiv: math.RT/0603356 | DOI | MR | Zbl

[20] Rouquier R., 2-Kac–Moody algebras, arXiv: 0812.5023

[21] Stroppel C., Webster B., Quiver Schur algebras and $q$-Fock space, arXiv: 1110.1115

[22] Webster B., Knot invariants and higher representation theory, Mem. Amer. Math. Soc., 250, 2017, v+141 pp., arXiv: 1309.3796 | DOI | MR

[23] Webster B., “On graded presentations of Hecke algebras and their generalizations”, Algebr. Comb., 3 (2020), 1–38, arXiv: 1305.0599 | DOI | MR | Zbl