@article{SIGMA_2023_19_a93,
author = {Kanam Park},
title = {A $3 \times 3$ {Lax} {Form} for the $q${-Painlev\'e} {Equation} of {Type} $E_6$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a93/}
}
Kanam Park. A $3 \times 3$ Lax Form for the $q$-Painlevé Equation of Type $E_6$. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a93/
[1] Boalch P., “Quivers and difference Painlevé equations”, Groups and Symmetries, CRM Proc. Lect. Notes, 47, American Mathematical Society, Providence, RI, 2009, 25–51, arXiv: 0706.2634 | DOI | MR | Zbl
[2] Dzhamay A., Knizel A., “$q$-Racah ensemble and $q$-${\rm P}(E_7^{(1)}/A_1^{(1)})$ discrete Painlevé equation”, Int. Math. Res. Not., 2020 (2020), 9797–9843, arXiv: 1903.06159 | DOI | MR | Zbl
[3] Dzhamay A., Takenawa T., “On some applications of Sakai's geometric theory of discrete Painlevé equations”, SIGMA, 14 (2018), 075, 20 pp., arXiv: 1804.10341 | DOI | MR | Zbl
[4] Grammaticos B., Ramani A., “The hunting for the discrete Painlevé equations”, Regul. Chaotic Dyn., 5 (2000), 53–66 | DOI | MR | Zbl
[5] Jimbo M., Sakai H., “A $q$-analog of the sixth Painlevé equation”, Lett. Math. Phys., 38 (1996), 145–154, arXiv: chao-dyn/9507010 | DOI | MR | Zbl
[6] Kajiwara K., Noumi M., Yamada Y., “Geometric aspects of Painlevé equations”, J. Phys. A, 50 (2017), 073001, 164 pp., arXiv: 1509.08186 | DOI | MR | Zbl
[7] Knizel A., “Moduli spaces of $q$-connections and gap probabilities”, Int. Math. Res. Not., 2016 (2016), 6921–6954, arXiv: 1506.06718 | DOI | MR | Zbl
[8] Park K., “A certain generalization of $q$-hypergeometric functions and their related connection preserving deformation II”, Funkcial. Ekvac., 65 (2022), 311–328, arXiv: 2005.04992 | DOI | MR
[9] Ramani A., Grammaticos B., Hietarinta J., “Discrete versions of the Painlevé equations”, Phys. Rev. Lett., 67 (1991), 1829–1832 | DOI | MR | Zbl
[10] Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K.M., “Special function solutions of the discrete Painlevé equations”, Comput. Math. Appl., 42 (2001), 603–614 | DOI | MR | Zbl
[11] Sakai H., “A $q$-analog of the Garnier system”, Funkcial. Ekvac., 48 (2005), 273–297 | DOI | MR | Zbl
[12] Sakai H., “Lax form of the $q$-Painlevé equation associated with the $A^{(1)}_2$ surface”, J. Phys. A, 39 (2006), 12203–12210 | DOI | MR | Zbl
[13] Suzuki T., “A $q$-analogue of the Drinfeld–Sokolov hierarchy of type $A$ and $q$-Painlevé system”, Algebraic and Analytic Aspects of Integrable Systems and Painlevé Equations, Contemp. Math., 651, American Mathematical Society, Providence, RI, 2015, 25–38, arXiv: 1105.4240 | DOI | MR | Zbl
[14] Suzuki T., “A Lax formulation of a generalized $q$-Garnier system”, Math. Phys. Anal. Geom., 24 (2021), 38, 12 pp., arXiv: 2103.15336 | DOI | MR | Zbl
[15] Witte N.S., Ormerod C.M., “Construction of a Lax pair for the $E_6^{(1)}$ $q$-Painlevé system”, SIGMA, 8 (2012), 097, 27 pp., arXiv: 1207.0041 | DOI | MR | Zbl
[16] Yamada Y., “Lax formalism for $q$-Painlevé equations with affine Weyl group symmetry of type $E^{(1)}_n$”, Int. Math. Res. Not., 2011 (2011), 3823–3838, arXiv: 1004.1687 | DOI | MR | Zbl