@article{SIGMA_2023_19_a92,
author = {Yael Karshon and Eugene Lerman},
title = {Vector {Fields} and {Flows} on {Subcartesian} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a92/}
}
Yael Karshon; Eugene Lerman. Vector Fields and Flows on Subcartesian Spaces. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a92/
[1] Breuer M., Marshall C.D., “Banachian differentiable spaces”, Math. Ann., 237 (1978), 105–120 | DOI | MR | Zbl
[2] Cushman R., “Reduction, Brouwer's Hamiltonian, and the critical inclination”, Celestial Mech., 31 (1983), 401–429 | DOI | MR | Zbl
[3] Cushman R., Śniatycki J., “On subcartesian spaces Leibniz' rule implies the chain rule”, Canad. Math. Bull., 63 (2020), 348–357, arXiv: 1903.10004 | DOI | MR | Zbl
[4] Joyce D., Algebraic geometry over $C^{\infty}$-rings, Mem. Amer. Math. Soc., 260, 2019, v+139 pp., arXiv: 1001.0023 | DOI | MR
[5] Karshon Y., Lerman E., Vector fields and flows on not-necessarily-embeddable subcartesian differential spaces, in preparation
[6] Kowalczyk A., “Whitney's and Nash's embedding theorems for differential spaces”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 28 (1980), 385–390 | MR | Zbl
[7] Kriegl A., Michor P.W., The convenient setting of global analysis, Math. Surv. and Monogr., 53, American Mathematical Society, Providence, RI, 1997 | DOI | MR | Zbl
[8] Lee J.M., Introduction to smooth manifolds, Grad. Texts Math., 218, Springer, New York, 2012 | DOI | MR
[9] Lerman E., Differential forms on $C^\infty$-ringed spaces, arXiv: 2212.11163
[10] Lerman E., Cartan calculus $C^\infty$-ringed spaces, arXiv: 2307.05604
[11] Motreanu D., “Embeddings of $C^{\infty}$-sub-{C}artesian spaces”, An.Şti. Univ. “Al. I. Cuza” Iaşi Secţ {I} a Mat. (N.S.), 25 (1979), 65–70 | MR | Zbl
[12] Muñoz Díaz J., Ortega Aramburu J. M., “Sobre las álgebras localmente convexas”, Collectanea Math., 20 (1969), 127–149 | MR | Zbl
[13] Navarro González J.A., Sancho de Salas J.B., $C^\infty$-differentiable spaces, Lect. Notes Math., 1824, Springer, Berlin, 2003 | DOI | MR
[14] Pysiak L., Sasin W., Heller M., Miller T., “Functorial differential spaces and the infinitesimal structure of space-time”, Rep. Math. Phys., 85 (2020), 443–454, arXiv: 1910.05581 | DOI | MR | Zbl
[15] Sikorski R., “Differential modules”, Colloq. Math., 24 (1971), 45–79 | DOI | MR | Zbl
[16] Sjamaar R., Lerman E., “Stratified symplectic spaces and reduction”, Ann. of Math., 134 (1991), 375–422 | DOI | MR | Zbl
[17] Śniatycki J., “Orbits of families of vector fields on subcartesian spaces”, Ann. Inst. Fourier, 53 (2003), 2257–2296, arXiv: math.DG/0211212 | DOI | MR | Zbl
[18] Śniatycki J., Differential geometry of singular spaces and reduction of symmetry, New Math. Monogr., 23, Cambridge University Press, Cambridge, 2013 | DOI | MR | Zbl
[19] Yamashita T., “Derivations on a $C^\infty$-ring”, Comm. Algebra, 44 (2016), 4811–4822 | DOI | MR | Zbl