Vector Fields and Flows on Subcartesian Spaces
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is part of a series of papers on differential geometry of $C^\infty$-ringed spaces. In this paper, we study vector fields and their flows on a class of singular spaces. Our class includes arbitrary subspaces of manifolds, as well as symplectic and contact quotients by actions of compact Lie groups. We show that derivations of the $C^\infty$-ring of global smooth functions integrate to smooth flows.
Keywords: differential space, $C^\infty$-ring, subcartesian, flow.
@article{SIGMA_2023_19_a92,
     author = {Yael Karshon and Eugene Lerman},
     title = {Vector {Fields} and {Flows} on {Subcartesian} {Spaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a92/}
}
TY  - JOUR
AU  - Yael Karshon
AU  - Eugene Lerman
TI  - Vector Fields and Flows on Subcartesian Spaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a92/
LA  - en
ID  - SIGMA_2023_19_a92
ER  - 
%0 Journal Article
%A Yael Karshon
%A Eugene Lerman
%T Vector Fields and Flows on Subcartesian Spaces
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a92/
%G en
%F SIGMA_2023_19_a92
Yael Karshon; Eugene Lerman. Vector Fields and Flows on Subcartesian Spaces. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a92/

[1] Breuer M., Marshall C.D., “Banachian differentiable spaces”, Math. Ann., 237 (1978), 105–120 | DOI | MR | Zbl

[2] Cushman R., “Reduction, Brouwer's Hamiltonian, and the critical inclination”, Celestial Mech., 31 (1983), 401–429 | DOI | MR | Zbl

[3] Cushman R., Śniatycki J., “On subcartesian spaces Leibniz' rule implies the chain rule”, Canad. Math. Bull., 63 (2020), 348–357, arXiv: 1903.10004 | DOI | MR | Zbl

[4] Joyce D., Algebraic geometry over $C^{\infty}$-rings, Mem. Amer. Math. Soc., 260, 2019, v+139 pp., arXiv: 1001.0023 | DOI | MR

[5] Karshon Y., Lerman E., Vector fields and flows on not-necessarily-embeddable subcartesian differential spaces, in preparation

[6] Kowalczyk A., “Whitney's and Nash's embedding theorems for differential spaces”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 28 (1980), 385–390 | MR | Zbl

[7] Kriegl A., Michor P.W., The convenient setting of global analysis, Math. Surv. and Monogr., 53, American Mathematical Society, Providence, RI, 1997 | DOI | MR | Zbl

[8] Lee J.M., Introduction to smooth manifolds, Grad. Texts Math., 218, Springer, New York, 2012 | DOI | MR

[9] Lerman E., Differential forms on $C^\infty$-ringed spaces, arXiv: 2212.11163

[10] Lerman E., Cartan calculus $C^\infty$-ringed spaces, arXiv: 2307.05604

[11] Motreanu D., “Embeddings of $C^{\infty}$-sub-{C}artesian spaces”, An.Şti. Univ. “Al. I. Cuza” Iaşi Secţ {I} a Mat. (N.S.), 25 (1979), 65–70 | MR | Zbl

[12] Muñoz Díaz J., Ortega Aramburu J. M., “Sobre las álgebras localmente convexas”, Collectanea Math., 20 (1969), 127–149 | MR | Zbl

[13] Navarro González J.A., Sancho de Salas J.B., $C^\infty$-differentiable spaces, Lect. Notes Math., 1824, Springer, Berlin, 2003 | DOI | MR

[14] Pysiak L., Sasin W., Heller M., Miller T., “Functorial differential spaces and the infinitesimal structure of space-time”, Rep. Math. Phys., 85 (2020), 443–454, arXiv: 1910.05581 | DOI | MR | Zbl

[15] Sikorski R., “Differential modules”, Colloq. Math., 24 (1971), 45–79 | DOI | MR | Zbl

[16] Sjamaar R., Lerman E., “Stratified symplectic spaces and reduction”, Ann. of Math., 134 (1991), 375–422 | DOI | MR | Zbl

[17] Śniatycki J., “Orbits of families of vector fields on subcartesian spaces”, Ann. Inst. Fourier, 53 (2003), 2257–2296, arXiv: math.DG/0211212 | DOI | MR | Zbl

[18] Śniatycki J., Differential geometry of singular spaces and reduction of symmetry, New Math. Monogr., 23, Cambridge University Press, Cambridge, 2013 | DOI | MR | Zbl

[19] Yamashita T., “Derivations on a $C^\infty$-ring”, Comm. Algebra, 44 (2016), 4811–4822 | DOI | MR | Zbl