Isomonodromic Deformations Along the Caustic of a Dubrovin–Frobenius Manifold
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the family of ordinary differential equations associated to a Dubrovin–Frobenius manifold along its caustic. Upon just loosing an idempotent at the caustic and under a non-degeneracy condition, we write down a normal form for this family and prove that the corresponding fundamental matrix solutions are strongly isomonodromic. It is shown that the exponent of formal monodromy is related to the multiplication structure of the Dubrovin–Frobenius manifold along its caustic.
Keywords: Dubrovin–Frobenius manifolds, differential equations.
Mots-clés : isomonodromic deformations
@article{SIGMA_2023_19_a91,
     author = {Felipe Reyes},
     title = {Isomonodromic {Deformations} {Along} the {Caustic} of a {Dubrovin{\textendash}Frobenius} {Manifold}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a91/}
}
TY  - JOUR
AU  - Felipe Reyes
TI  - Isomonodromic Deformations Along the Caustic of a Dubrovin–Frobenius Manifold
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a91/
LA  - en
ID  - SIGMA_2023_19_a91
ER  - 
%0 Journal Article
%A Felipe Reyes
%T Isomonodromic Deformations Along the Caustic of a Dubrovin–Frobenius Manifold
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a91/
%G en
%F SIGMA_2023_19_a91
Felipe Reyes. Isomonodromic Deformations Along the Caustic of a Dubrovin–Frobenius Manifold. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a91/

[1] Arsie A., Buryak A., Lorenzoni P., Rossi P., “Semisimple flat $F$-manifolds in higher genus”, Comm. Math. Phys., 397 (2020), 141–197, arXiv: 2001.05599 | DOI | MR

[2] Arsie A., Buryak A., Lorenzoni P., Rossi P., “Riemannian $F$-manifolds, bi-flat $F$-manifolds, and flat pencils of metrics”, Int. Math. Res. Not., 2022 (2022), 16730–16778, arXiv: 2104.09380 | DOI | MR | Zbl

[3] Basalaev A., Hertling C., “3-dimensional $F$-manifolds”, Lett. Math. Phys., 111 (2021), 90, 50 pp., arXiv: 2012.11443 | DOI | MR | Zbl

[4] Basalaev A., Takahashi A., “On rational Frobenius manifolds of rank three with symmetries”, J. Geom. Phys., 84 (2014), 73–86, arXiv: 1401.3505 | DOI | MR | Zbl

[5] Cotti G., Dubrovin B., Guzzetti D., “Local moduli of semisimple Frobenius coalescent structures”, SIGMA, 16 (2020), 040, 105 pp., arXiv: 1712.08575 | DOI | MR | Zbl

[6] Dubrovin B., “Geometry of $2$D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl

[7] Dubrovin B., “Differential geometry of the space of orbits of a Coxeter group”, Surveys in Differential Geometry: Integrable Systems, Surv. Differ. Geom., 4, International Press, Boston, MA, 1998, 181–211, arXiv: hep-th/9303152 | DOI | MR

[8] Dubrovin B., “Painlevé transcendents in two-dimensional topological field theory”, The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 287–412, arXiv: math.AG/9803107 | DOI | MR | Zbl

[9] Guzzetti D., “Isomonodromic deformations along a stratum of the coalescence locus”, J. Phys. A, 55 (2022), 455202, 52 pp., arXiv: 2111.02969 | DOI | MR | Zbl

[10] Hertling C., Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts Math., 151, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl

[11] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I General theory and $\tau $-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl

[12] Saito K., “Primitive forms for a universal unfolding of a function with an isolated critical point”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1981), 775–792 | MR | Zbl

[13] Saito K., Takahashi A., “From primitive forms to Frobenius manifolds”, From Hodge Theory to Integrability and TQFT tt*-Geometry, Proc. Sympos. Pure Math., 78, American Mathematical Society, Providence, RI, 2008, 31–48 | DOI | MR | Zbl

[14] Sibuya Y., “Simplification of a system of linear ordinary differential equations about a singular point”, Funkcial. Ekvac., 4 (1962), 29–56 | MR | Zbl

[15] Strachan I.A.B., “Frobenius manifolds: natural submanifolds and induced bi-Hamiltonian structures”, Differential Geom. Appl., 20 (2004), 67–99, arXiv: math.DG/0201039 | DOI | MR | Zbl