Mots-clés : isomonodromic deformations
@article{SIGMA_2023_19_a91,
author = {Felipe Reyes},
title = {Isomonodromic {Deformations} {Along} the {Caustic} of a {Dubrovin{\textendash}Frobenius} {Manifold}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a91/}
}
Felipe Reyes. Isomonodromic Deformations Along the Caustic of a Dubrovin–Frobenius Manifold. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a91/
[1] Arsie A., Buryak A., Lorenzoni P., Rossi P., “Semisimple flat $F$-manifolds in higher genus”, Comm. Math. Phys., 397 (2020), 141–197, arXiv: 2001.05599 | DOI | MR
[2] Arsie A., Buryak A., Lorenzoni P., Rossi P., “Riemannian $F$-manifolds, bi-flat $F$-manifolds, and flat pencils of metrics”, Int. Math. Res. Not., 2022 (2022), 16730–16778, arXiv: 2104.09380 | DOI | MR | Zbl
[3] Basalaev A., Hertling C., “3-dimensional $F$-manifolds”, Lett. Math. Phys., 111 (2021), 90, 50 pp., arXiv: 2012.11443 | DOI | MR | Zbl
[4] Basalaev A., Takahashi A., “On rational Frobenius manifolds of rank three with symmetries”, J. Geom. Phys., 84 (2014), 73–86, arXiv: 1401.3505 | DOI | MR | Zbl
[5] Cotti G., Dubrovin B., Guzzetti D., “Local moduli of semisimple Frobenius coalescent structures”, SIGMA, 16 (2020), 040, 105 pp., arXiv: 1712.08575 | DOI | MR | Zbl
[6] Dubrovin B., “Geometry of $2$D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl
[7] Dubrovin B., “Differential geometry of the space of orbits of a Coxeter group”, Surveys in Differential Geometry: Integrable Systems, Surv. Differ. Geom., 4, International Press, Boston, MA, 1998, 181–211, arXiv: hep-th/9303152 | DOI | MR
[8] Dubrovin B., “Painlevé transcendents in two-dimensional topological field theory”, The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 287–412, arXiv: math.AG/9803107 | DOI | MR | Zbl
[9] Guzzetti D., “Isomonodromic deformations along a stratum of the coalescence locus”, J. Phys. A, 55 (2022), 455202, 52 pp., arXiv: 2111.02969 | DOI | MR | Zbl
[10] Hertling C., Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts Math., 151, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl
[11] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I General theory and $\tau $-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl
[12] Saito K., “Primitive forms for a universal unfolding of a function with an isolated critical point”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1981), 775–792 | MR | Zbl
[13] Saito K., Takahashi A., “From primitive forms to Frobenius manifolds”, From Hodge Theory to Integrability and TQFT tt*-Geometry, Proc. Sympos. Pure Math., 78, American Mathematical Society, Providence, RI, 2008, 31–48 | DOI | MR | Zbl
[14] Sibuya Y., “Simplification of a system of linear ordinary differential equations about a singular point”, Funkcial. Ekvac., 4 (1962), 29–56 | MR | Zbl
[15] Strachan I.A.B., “Frobenius manifolds: natural submanifolds and induced bi-Hamiltonian structures”, Differential Geom. Appl., 20 (2004), 67–99, arXiv: math.DG/0201039 | DOI | MR | Zbl