@article{SIGMA_2023_19_a90,
author = {Luca Benatti and Mattia Fogagnolo and Lorenzo Mazzieri},
title = {Nonlinear {Isocapacitary} {Concepts} of {Mass} in {3-Manifolds} with {Nonnegative} {Scalar} {Curvature}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a90/}
}
TY - JOUR AU - Luca Benatti AU - Mattia Fogagnolo AU - Lorenzo Mazzieri TI - Nonlinear Isocapacitary Concepts of Mass in 3-Manifolds with Nonnegative Scalar Curvature JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a90/ LA - en ID - SIGMA_2023_19_a90 ER -
%0 Journal Article %A Luca Benatti %A Mattia Fogagnolo %A Lorenzo Mazzieri %T Nonlinear Isocapacitary Concepts of Mass in 3-Manifolds with Nonnegative Scalar Curvature %J Symmetry, integrability and geometry: methods and applications %D 2023 %V 19 %U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a90/ %G en %F SIGMA_2023_19_a90
Luca Benatti; Mattia Fogagnolo; Lorenzo Mazzieri. Nonlinear Isocapacitary Concepts of Mass in 3-Manifolds with Nonnegative Scalar Curvature. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a90/
[1] Agostiniani V., Fogagnolo M., Mazzieri L., “Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature”, Invent. Math., 222 (2020), 1033–1101, arXiv: 1812.05022 | DOI | MR | Zbl
[2] Agostiniani V., Fogagnolo M., Mazzieri L., “Minkowski inequalities via nonlinear potential theory”, Arch. Ration. Mech. Anal., 244 (2022), 51–85, arXiv: 1906.00322 | DOI | MR | Zbl
[3] Agostiniani V., Mantegazza C., Mazzieri L., Oronzio F., Riemannian Penrose inequality via nonlinear potential theory, arXiv: 2205.11642
[4] Agostiniani V., Mazzieri L., “Monotonicity formulas in potential theory”, Calc. Var. Partial Differential Equations, 59 (2020), 6, 32 pp., arXiv: 1606.02489 | DOI | MR | Zbl
[5] Agostiniani V., Mazzieri L., Oronzio F., A Green's function proof of the positive mass theorem, arXiv: 2108.08402
[6] Arnowitt R., Deser S., Misner C.W., “Coordinate invariance and energy expressions in general relativity”, Phys. Rev., 122 (1961), 997–1006 | DOI | MR | Zbl
[7] Bartnik R., “The mass of an asymptotically flat manifold”, Comm. Pure Appl. Math., 39 (1986), 661–693 | DOI | MR | Zbl
[8] Benatti L., Monotonicity formulas in nonlinear potential theory and their geometric applications, Ph.D. Thesis, Università degli studi di Trento, 2022
[9] Benatti L., Fogagnolo M., Mazzieri L., “The asymptotic behaviour of $p$-capacitary potentials in asymptotically conical manifolds”, Math. Ann. (to appear) , arXiv: 2207.08607 | DOI
[10] Benatti L., Fogagnolo M., Mazzieri L., Minkowski inequality on complete Riemannian manifolds with nonnegative Ricci curvature, arXiv: 2101.06063
[11] Benatti L., Fogagnolo M., Mazzieri L., On the isoperimetric Riemannian Penrose inequality, arXiv: 2212.10215
[12] Bray H., Miao P., “On the capacity of surfaces in manifolds with nonnegative scalar curvature”, Invent. Math., 172 (2008), 459–475, arXiv: 0707.3337 | DOI | MR | Zbl
[13] Bray H.L., “Proof of the Riemannian Penrose inequality using the positive mass theorem”, J. Differential Geom., 59 (2001), 177–267, arXiv: math.DG/9911173 | DOI | MR | Zbl
[14] Chan P.-Y., Chu J., Lee M.-C., Tsang T.-Y., Monotonicity of the $p$-Green functions, arXiv: 2202.13832
[15] Chodosh O., Eichmair M., Shi Y., Yu H., “Isoperimetry, scalar curvature, and mass in asymptotically flat Riemannian 3-manifolds”, Comm. Pure Appl. Math., 74 (2021), 865–905, arXiv: 1606.04626 | DOI | MR | Zbl
[16] Chruściel P., “Boundary conditions at spatial infinity from a Hamiltonian point of view”, Topological Properties and Global Structure of Space-Time (Erice, 1985), NATO Adv. Sci. Inst. Ser. B: Phys., 138, Springer, Boston, MA, 1986, 49–59, arXiv: 1312.0254 | DOI | MR
[17] DiBenedetto E., “$C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations”, Nonlinear Anal., 7 (1983), 827–850 | DOI | MR | Zbl
[18] Evans L.C., “A new proof of local $C^{1,\alpha }$ regularity for solutions of certain degenerate elliptic p.d.e.”, J. Differential Equations, 45 (1982), 356–373 | DOI | MR | Zbl
[19] Fan X.-Q., Shi Y., Tam L.-F., “Large-sphere and small-sphere limits of the Brown–York mass”, Comm. Anal. Geom., 17 (2009), 37–72, arXiv: 0711.2552 | DOI | MR | Zbl
[20] Fogagnolo M., Mazzieri L., “Minimising hulls, $p$-capacity and isoperimetric inequality on complete Riemannian manifolds”, J. Funct. Anal., 283 (2022), 109638, 49 pp., arXiv: 2012.09490 | DOI | MR | Zbl
[21] Fogagnolo M., Mazzieri L., Pinamonti A., “Geometric aspects of $p$-capacitary potentials”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 36 (2019), 1151–1179, arXiv: 1803.10679 | DOI | MR | Zbl
[22] Heinonen J., Kilpeläinen T., “$A$-superharmonic functions and supersolutions of degenerate elliptic equations”, Ark. Mat., 26 (1988), 87–105 | DOI | MR | Zbl
[23] Heinonen J., Kilpeläinen T., Martio O., Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006 | MR | Zbl
[24] Holopainen I., “Nonlinear potential theory and quasiregular mappings on Riemannian manifolds”, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 1990, 1–45 | MR | Zbl
[25] Holopainen I., “Volume growth, Green's functions, and parabolicity of ends”, Duke Math. J., 97 (1999), 319–346 | DOI | MR | Zbl
[26] Huisken G., An isoperimetric concept for the mass in general relativity https://www.youtube.com/watch?v=4aG5L49p428
[27] Huisken G., Ilmanen T., “The inverse mean curvature flow and the Riemannian Penrose inequality”, J. Differential Geom., 59 (2001), 353–437 | DOI | MR | Zbl
[28] Jauregui J.L., ADM mass and the capacity-volume deficit at infinity, arXiv: 2002.08941
[29] Jauregui J.L., Lee D.A., “Lower semicontinuity of mass under $C^0$ convergence and Huisken's isoperimetric mass”, J. Reine Angew. Math., 756 (2019), 227–257, arXiv: 1602.00732 | DOI | MR | Zbl
[30] Kotschwar B., Ni L., “Local gradient estimates of $p$-harmonic functions, $1/H$-flow, and an entropy formula”, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 1–36, arXiv: 0711.2291 | DOI | MR | Zbl
[31] Ladyzhenskaya O.A., Ural'tseva N.N., Linear and quasilinear elliptic equations, Academic Press, New York, 1968 | MR | Zbl
[32] Lewis J.L., “Regularity of the derivatives of solutions to certain degenerate elliptic equations”, Indiana Univ. Math. J., 32 (1983), 849–858 | DOI | MR | Zbl
[33] Lieberman G.M., “Boundary regularity for solutions of degenerate elliptic equations”, Nonlinear Anal., 12 (1988), 1203–1219 | DOI | MR | Zbl
[34] Lou H., “On singular sets of local solutions to $p$-Laplace equations”, Chinese Ann. Math. Ser. B, 29 (2008), 521–530 | DOI | MR | Zbl
[35] Mari L., Rigoli M., Setti A.G., “On the $1/H$-flow by $p$-Laplace approximation: new estimates via fake distances under Ricci lower bounds”, Amer. J. Math., 144 (2022), 779–849, arXiv: 1905.00216 | DOI | MR | Zbl
[36] Moser R., “The inverse mean curvature flow and $p$-harmonic functions”, J. Eur. Math. Soc., 9 (2007), 77–83 | DOI | MR | Zbl
[37] Moser R., “The inverse mean curvature flow as an obstacle problem”, Indiana Univ. Math. J., 57 (2008), 2235–2256 | DOI | MR | Zbl
[38] Munteanu O., Wang J., “Comparison theorems for 3D manifolds with scalar curvature bound”, Int. Math. Res. Not., 2023 (2023), 2215–2242, arXiv: 2105.12103 | DOI | MR | Zbl
[39] Ni L., “Mean value theorems on manifolds”, Asian J. Math., 11 (2007), 277–304, arXiv: math.DG/0608608 | DOI | MR | Zbl
[40] Oronzio F., ADM
[41] Serrin J., “Local behavior of solutions of quasi-linear equations”, Acta Math., 111 (1964), 247–302 | DOI | MR | Zbl
[42] Tolksdorf P., “On the Dirichlet problem for quasilinear equations”, Comm. Partial Differential Equations, 8 (1983), 773–817 | DOI | MR | Zbl
[43] Trudinger N.S., “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. Pure Appl. Math., 20 (1967), 721–747 | DOI | MR | Zbl
[44] Ural'tseva N.N., “Degenerate quasilinear elliptic systems”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7, 1968, 184–222 | MR
[45] Valtorta D., On the $p$-Laplace operator on Riemannian manifolds, Ph.D. Thesis, Università degli Studi di Milano, 2013, arXiv: 1212.3422
[46] Wang X., Zhang L., “Local gradient estimate for $p$-harmonic functions on Riemannian manifolds”, Comm. Anal. Geom., 19 (2011), 759–771, arXiv: 1010.2889 | DOI | MR
[47] Xia C., Yin J., “The anisotropic $p$-capacity and the anisotropic Minkowski inequality”, Sci. China Math., 65 (2022), 559–582, arXiv: 2012.13933 | DOI | MR | Zbl
[48] Xiao J., “The $p$-harmonic capacity of an asymptotically flat 3-manifold with non-negative scalar curvature”, Ann. Henri Poincaré, 17 (2016), 2265–2283 | DOI | MR | Zbl
[49] Zhu S., “The comparison geometry of Ricci curvature”, Comparison Geometry (Berkeley, CA), Math. Sci. Res. Inst. Publ., 30, Cambridge University Press, Cambridge, 1997, 221–262 | MR | Zbl