Mots-clés : para-orthogonal polynomials, Bannai–Ito polynomials
@article{SIGMA_2023_19_a89,
author = {Jonathan Pelletier and Luc Vinet and Alexei Zhedanov},
title = {Para-Bannai{\textendash}Ito {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a89/}
}
Jonathan Pelletier; Luc Vinet; Alexei Zhedanov. Para-Bannai–Ito Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a89/
[1] Bannai E., Ito T., Algebraic combinatorics. I Association schemes, The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1984 | MR | Zbl
[2] Bergeron G., Gaboriaud J., Vinet L., Zhedanov A., “Sklyanin-like algebras for ($q$-)linear grids and ($q$-)para-Krawtchouk polynomials”, J. Math. Phys., 62 (2021), 013505, 20 pp., arXiv: 2008.03266 | DOI | MR | Zbl
[3] Bergeron G., Gaboriaud J., Vinet L., Zhedanov A., “The rational Sklyanin algebra and the Wilson and para-Racah polynomials”, J. Math. Phys., 63 (2022), 061704, 14 pp., arXiv: 2103.09631 | DOI | MR | Zbl
[4] Chihara T.S., An introduction to orthogonal polynomials, Math. Appl., 13, Gordon and Breach Science Publishers, New York, 1978 | MR | Zbl
[5] Gaboriaud J., Tsujimoto S., Vinet L., Zhedanov A., “Degenerate Sklyanin algebras, Askey–Wilson polynomials and Heun operators”, J. Phys. A, 53 (2020), 445204, 19 pp., arXiv: 2005.06961 | DOI | MR | Zbl
[6] Genest V.X., Tsujimoto S., Vinet L., Zhedanov A., “Persymmetric Jacobi matrices, isospectral deformations and orthogonal polynomials”, J. Math. Anal. Appl., 450 (2017), 915–928, arXiv: 1605.00708 | DOI | MR | Zbl
[7] Genest V.X., Vinet L., Zhedanov A., “Bispectrality of the complementary Bannai–Ito polynomials”, SIGMA, 9 (2013), 018, 20 pp., arXiv: 1211.2461 | DOI | MR | Zbl
[8] Gorsky A.S., Zabrodin A.V., “Degenerations of Sklyanin algebra and Askey–Wilson polynomials”, J. Phys. A, 26 (1993), L635–L639, arXiv: hep-th/9303026 | DOI | MR | Zbl
[9] Haine L., “Orthogonal polynomials satisfying $q$-difference equations”, Bilinear integrable systems: from classical to quantum, continuous to discrete, NATO Sci. Ser. II Math. Phys. Chem., 201, Springer, Dordrecht, 2006, 97–112 | DOI | MR | Zbl
[10] Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monogr. Math., Springer, Berlin, 2010 | DOI | MR | Zbl
[11] Lemay J.-M., Vinet L., Zhedanov A., “An analytic spin chain model with fractional revival”, J. Phys. A, 49 (2016), 335302, 15 pp., arXiv: 1509.08965 | DOI | MR | Zbl
[12] Lemay J.-M., Vinet L., Zhedanov A., “The para-Racah polynomials”, J. Math. Anal. Appl., 438 (2016), 565–577, arXiv: 1511.05215 | DOI | MR | Zbl
[13] Lemay J.-M., Vinet L., Zhedanov A., “A $q$-generalization of the para-Racah polynomials”, J. Math. Anal. Appl., 462 (2018), 323–336, arXiv: 1708.03368 | DOI | MR | Zbl
[14] Leonard D.A., “Orthogonal polynomials, duality and association schemes”, SIAM J. Math. Anal., 13 (1982), 656–663 | DOI | MR | Zbl
[15] Tsujimoto S., Vinet L., Zhedanov A., “Dunkl shift operators and Bannai–Ito polynomials”, Adv. Math., 229 (2012), 2123–2158, arXiv: 1106.3512 | DOI | MR | Zbl
[16] Tsujimoto S., Vinet L., Zhedanov A., “Dual $-1$ Hahn polynomials: “classical” polynomials beyond the Leonard duality”, Proc. Amer. Math. Soc., 141 (2013), 959–970, arXiv: 1108.0132 | DOI | MR | Zbl
[17] Vinet L., Zhedanov A., “A ‘missing’ family of classical orthogonal polynomials”, J. Phys. A, 44 (2011), 085201, 16 pp., arXiv: 1011.1669 | DOI | MR | Zbl
[18] Vinet L., Zhedanov A., “A limit $q=-1$ for the big $q$-Jacobi polynomials”, Trans. Amer. Math. Soc., 364 (2012), 5491–5507 | DOI | MR | Zbl
[19] Vinet L., Zhedanov A., “Para-Krawtchouk polynomials on a bi-lattice and a quantum spin chain with perfect state transfer”, J. Phys. A, 45 (2012), 265304, 11 pp., arXiv: 1110.6475 | DOI | MR | Zbl
[20] Zhedanov A., “Rational spectral transformations and orthogonal polynomials”, J. Comput. Appl. Math., 85 (1997), 67–86 | DOI | MR | Zbl