Mots-clés : affine Laumon space, affine Weyl group, quantum Painlevé equation.
@article{SIGMA_2023_19_a88,
author = {Hidetoshi Awata and Koji Hasegawa and Hiroaki Kanno and Ryo Ohkawa and Shamil Shakirov and Jun'ichi Shiraishi and Yasuhiko Yamada},
title = {Non-Stationary {Difference} {Equation} and {Affine} {Laumon} {Space:} {Quantization} of {Discrete} {Painlev\'e} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a88/}
}
TY - JOUR AU - Hidetoshi Awata AU - Koji Hasegawa AU - Hiroaki Kanno AU - Ryo Ohkawa AU - Shamil Shakirov AU - Jun'ichi Shiraishi AU - Yasuhiko Yamada TI - Non-Stationary Difference Equation and Affine Laumon Space: Quantization of Discrete Painlevé Equation JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a88/ LA - en ID - SIGMA_2023_19_a88 ER -
%0 Journal Article %A Hidetoshi Awata %A Koji Hasegawa %A Hiroaki Kanno %A Ryo Ohkawa %A Shamil Shakirov %A Jun'ichi Shiraishi %A Yasuhiko Yamada %T Non-Stationary Difference Equation and Affine Laumon Space: Quantization of Discrete Painlevé Equation %J Symmetry, integrability and geometry: methods and applications %D 2023 %V 19 %U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a88/ %G en %F SIGMA_2023_19_a88
Hidetoshi Awata; Koji Hasegawa; Hiroaki Kanno; Ryo Ohkawa; Shamil Shakirov; Jun'ichi Shiraishi; Yasuhiko Yamada. Non-Stationary Difference Equation and Affine Laumon Space: Quantization of Discrete Painlevé Equation. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a88/
[1] Alday L.F., Gaiotto D., Gukov S., Tachikawa Y., Verlinde H., “Loop and surface operators in ${\mathcal N}=2$ gauge theory and Liouville modular geometry”, J. High Energy Phys., 2010:1 (2010), 113, 50 pp., arXiv: 0909.0945 | DOI | MR | Zbl
[2] Alday L.F., Gaiotto D., Tachikawa Y., “Liouville correlation functions from four-dimensional gauge theories”, Lett. Math. Phys., 91 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl
[3] Alday L.F., Tachikawa Y., “Affine ${\rm SL}(2)$ conformal blocks from 4d gauge theories”, Lett. Math. Phys., 94 (2010), 87–114, arXiv: 1005.4469 | DOI | MR | Zbl
[4] Awata H., Fuji H., Kanno H., Manabe M., Yamada Y., “Localization with a surface operator, irregular conformal blocks and open topological string”, Adv. Theor. Math. Phys., 16 (2012), 725–804 , arXiv: http://projecteuclid.org/euclid.atmp/13637920051008.0574 | DOI | MR | Zbl
[5] Awata H., Hasegawa K., Kanno H., Ohkawa R., Shakirov S., Shiraishi J., Yamada Y., Non-stationary difference equation and affine Laumon space II: Quantum Knizhnik–Zamolodchikov equation, arXiv: 2309.15364
[6] Awata H., Yamada Y., “Five-dimensional AGT conjecture and the deformed Virasoro algebra”, J. High Energy Phys., 2010:1 (2010), 125, 11 pp., arXiv: 0910.4431 | DOI | MR | Zbl
[7] Bao L., Mitev V., Pomoni E., Taki M., Yagi F., “Non-Lagrangian theories from brane junctions”, J. High Energy Phys., 2014:1 (2014), 175, 65 pp., arXiv: 1310.3841 | DOI | MR
[8] Belavin A.A., Polyakov A.M., Zamolodchikov A.B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B, 241 (1984), 333–380 | DOI | MR | Zbl
[9] Bershtein M., Gavrylenko P., Marshakov A., “Cluster integrable systems, $q$-Painlevé equations and their quantization”, J. High Energy Phys., 2018:2 (2018), 077, 34 pp., arXiv: 1711.02063 | DOI | MR
[10] Bershtein M.A., Shchechkin A.I., “$q$-deformed Painlevé $\tau$ function and $q$-deformed conformal blocks”, J. Phys. A, 50 (2017), 085202, 22 pp., arXiv: 1608.02566 | DOI | MR | Zbl
[11] Bonelli G., Del Monte F., Tanzini A., “BPS quivers of five-dimensional SCFTs, topological strings and $q$-Painlevé equations”, Ann. Henri Poincaré, 22 (2021), 2721–2773, arXiv: 2007.11596 | DOI | MR | Zbl
[12] Bonelli G., Grassi A., Tanzini A., “Quantum curves and $q$-deformed Painlevé equations”, Lett. Math. Phys., 109 (2019), 1961–2001, arXiv: 1710.11603 | DOI | MR | Zbl
[13] Brandhuber A., Itzhaki N., Sonnenschein J., Theisen S., Yankielowicz S., “On the M-theory approach to (compactified) $5$D field theories”, Phys. Lett. B, 415 (1997), 127–134, arXiv: hep-th/9709010 | DOI | MR
[14] Braverman A., “Instanton counting via affine Lie algebras. I Equivariant $J$-functions of (affine) flag manifolds and Whittaker vectors”, Algebraic Structures and Moduli Spaces, CRM Proc. Lecture Notes, 38, American Mathematical Society, Providence, RI, 2004, 113–132, arXiv: math.AG/0401409 | DOI | MR | Zbl
[15] Braverman A., Etingof P., “Instanton counting via affine Lie algebras. II. From Whittaker vectors to the Seiberg–Witten prepotential”, Studies in Lie Theory: Dedicated to A Joseph on his Sixtieth Birthday, Progr. Math., 243, Birkhäuser, Boston, MA, 2006, 61–78, arXiv: math.AG/0409441 | DOI | MR | Zbl
[16] Bullimore M., Kim H.-C., Koroteev P., “Defects and quantum Seiberg–Witten geometry”, J. High Energy Phys., 2015:5 (2015), 095, 79 pp., arXiv: 1412.6081 | DOI | MR
[17] Eguchi T., Kanno H., “Five-dimensional gauge theories and local mirror symmetry”, Nuclear Phys. B, 586 (2000), 331–345, arXiv: hep-th/0005008 | DOI | MR | Zbl
[18] Faddeev L., Volkov A.Yu., “Abelian current algebra and the {V}irasoro algebra on the lattice”, Phys. Lett. B, 315 (1993), 311–318, arXiv: hep-th/9307048 | DOI | MR | Zbl
[19] Fateev V.A., Zamolodchikov A.B., “Self-dual solutions of the star-triangle relations in $Z_{N}$-models”, Phys. Lett. A, 92 (1982), 37–39 | DOI | MR
[20] Feigin B., Finkelberg M., Negut A., Rybnikov L., “Yangians and cohomology rings of Laumon spaces”, Selecta Math. (N.S.), 17 (2011), 573–607, arXiv: 0812.4656 | DOI | MR | Zbl
[21] Finkelberg M., Rybnikov R., Quantization of Drinfeld Zastava in type A, arXiv: 1009.0676 | MR
[22] Frenkel E., Gukov S., Teschner J., “Surface operators and separation of variables”, J. High Energy Phys., 2016:1 (2016), 179, 53 pp., arXiv: 1506.07508 | DOI | MR | Zbl
[23] Garoufalidis S., Wheeler C., Modular $q$-holonomic modules, arXiv: 2203.17029
[24] Gasper G., Rahman M., Basic hypergeometric series. Second series, Encyclopedia Math. Appl., 96, Cambridge University Press, Cambridge, 2004 | DOI | MR
[25] Hasegawa K., “Quantizing the Bäcklund transformations of Painlevé equations and the quantum discrete Painlevé VI equation”, Exploring New Structures and Natural Constructions in Mathematical Physics, Adv. Stud. Pure Math., 61, Mathematical Society of Japan, Tokyo, 2011, 275–288, arXiv: math/0703036 | DOI | MR | Zbl
[26] Hasegawa K., “Quantizing the discrete Painlevé VI equation: the Lax formalism”, Lett. Math. Phys., 103 (2013), 865–879, arXiv: 1210.0915 | DOI | MR | Zbl
[27] Hayashi H., Kim H.C., Nishinaka T., “Topological strings and 5d $T_N$ partition functions”, J. High Energy Phys., 2014:6 (2014), 014, 67 pp., arXiv: 1310.3854 | DOI
[28] Jimbo M., Sakai H., “A $q$-analog of the sixth Painlevé equation”, Lett. Math. Phys., 38 (1996), 145–154, arXiv: chao-dyn/9507010 | DOI | MR | Zbl
[29] Kanno H., Tachikawa Y., “Instanton counting with a surface operator and the chain-saw quiver”, J. High Energy Phys., 2011:6 (2011), 119, 24 pp., arXiv: 1105.0357 | DOI | MR | Zbl
[30] Kim S.-S., Yagi F., “5d $E_n$ Seiberg–Witten curve via toric-like diagram”, J. High Energy Phys., 2015:6 (2015), 082, 63 pp., arXiv: 1411.7903 | DOI | MR
[31] Kirillov A.N., “Dilogarithm identities”, Progr. Theoret. Phys. Suppl., 1995, 61–142, arXiv: hep-th/9408113 | DOI | MR | Zbl
[32] Kozçaz C., Pasquetti S., Passerini F., Wyllard N., “Affine ${\rm sl}(N)$ conformal blocks from $\mathcal N=2$ ${\rm SU}(N)$ gauge theories”, J. High Energy Phys., 2011:1 (2011), 045, 40 pp., arXiv: 1008.1412 | DOI | MR | Zbl
[33] Kuroki G., “Quantum groups and quantization of Weyl group symmetries of Painlevé systems”, Exploring New Structures and Natural Constructions in Mathematical Physics, Adv. Stud. Pure Math., 61, Mathematical Society of Japan, Tokyo, 2011, 289–325, arXiv: 0808.2604 | DOI | MR | Zbl
[34] Langmann E., Noumi M., Shiraishi J., “Basic properties of non-stationary Ruijsenaars functions”, SIGMA, 16 (2020), 105, 26 pp., arXiv: 2006.07171 | DOI | MR | Zbl
[35] Marshakov A., Mironov A., Morosov A., “On AGT relations with surface operator insertion and a stationary limit of beta-ensembles”, J. Geom. Phys., 61 (2011), 1203–1222, arXiv: 1011.4491 | DOI | MR | Zbl
[36] Moriyama S., Yamada Y., “Quantum representation of affine Weyl groups and associated quantum curves”, SIGMA, 17 (2021), 076, 24 pp., arXiv: 2104.06661 | DOI | MR | Zbl
[37] Neguţ A., Affine Laumon spaces and integrable systems, arXiv: 1112.1756
[38] Nekrasov N., BPS/CFT correspondence V: BPZ and KZ equations from $qq$-characters, arXiv: 1711.11582
[39] Nekrasov N., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2003), 831–864 , arXiv: http://projecteuclid.org/euclid.atmp/1111510432hep-th/0206161 | DOI | MR | Zbl
[40] Nekrasov N., “BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and $qq$-characters”, J. High Energy Phys., 2017:3 (2017), 181, 69 pp., arXiv: 1512.05388 | DOI | MR
[41] Nekrasov N., Shatashvili S.L., “Quantization of integrable systems and four dimensional gauge theories”, XVIth International Congress on Mathematical Physics, World Scientific, Hackensack, NJ, 2010, 265–289, arXiv: 0908.4052 | DOI | MR | Zbl
[42] Nekrasov N., Tsymbaliuk A., “Surface defects in gauge theory and KZ equation”, Lett. Math. Phys., 112 (2022), 28, 53 pp., arXiv: 2103.12611 | DOI | MR | Zbl
[43] Noumi M., Shiraishi J., A direct approach to the bispectral problem for the Ruijsenaars–Macdonald $q$-difference operators, arXiv: 1206.5364
[44] Poghossian R., “Deformed SW curve and the null vector decoupling equation in Toda field theory”, J. High Energy Phys., 2016:4 (2016), 070, 24 pp., arXiv: 1601.05096 | DOI | MR
[45] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[46] Shakirov S., Non-stationary difference equation for $q$-Virasoro conformal blocks, arXiv: 2111.07939
[47] Shiraishi J., “Affine screening operators, affine Laumon spaces and conjectures concerning non-stationary Ruijsenaars functions”, J. Integrable Syst., 4 (2019), xyz010, 30 pp., arXiv: 1903.07495 | DOI | MR | Zbl
[48] Shiraishi J., Kubo H., Awata H., Odake S., “A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions”, Lett. Math. Phys., 38 (1996), 33–51, arXiv: q-alg/9507034 | DOI | MR | Zbl
[49] Taki M., “Surface operator, bubbling Calabi–Yau and AGT relation”, J. High Energy Phys., 2011:7 (2011), 047, 33 pp., arXiv: 1007.2524 | DOI | MR | Zbl