A Poincaré Formula for Differential Forms and Applications
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove a new general Poincaré-type inequality for differential forms on compact Riemannian manifolds with nonempty boundary. When the boundary is isometrically immersed in Euclidean space, we derive a new inequality involving mean and scalar curvatures of the boundary only and characterize its limiting case in codimension one. A new Ros-type inequality for differential forms is also derived assuming the existence of a nonzero parallel form on the manifold.
Keywords: manifolds with boundary, boundary value problems, Hodge Laplace operator, rigidity results.
@article{SIGMA_2023_19_a87,
     author = {Nicolas Ginoux and Georges Habib and Simon Raulot},
     title = {A {Poincar\'e} {Formula} for {Differential} {Forms} and {Applications}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a87/}
}
TY  - JOUR
AU  - Nicolas Ginoux
AU  - Georges Habib
AU  - Simon Raulot
TI  - A Poincaré Formula for Differential Forms and Applications
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a87/
LA  - en
ID  - SIGMA_2023_19_a87
ER  - 
%0 Journal Article
%A Nicolas Ginoux
%A Georges Habib
%A Simon Raulot
%T A Poincaré Formula for Differential Forms and Applications
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a87/
%G en
%F SIGMA_2023_19_a87
Nicolas Ginoux; Georges Habib; Simon Raulot. A Poincaré Formula for Differential Forms and Applications. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a87/

[1] Bourguignon J.-P., Hijazi O., Milhorat J.-L., Moroianu A., Moroianu S., A spinorial approach to Riemannian and conformal geometry, EMS Monogr. Math., European Mathematical Society (EMS), Zürich, 2015 | DOI | MR | Zbl

[2] Brown J.D., York Jr. J.W., “Quasilocal energy and conserved charges derived from the gravitational action”, Phys. Rev. D, 47 (1993), 1407–1419, arXiv: gr-qc/9209012 | DOI | MR

[3] do Carmo M.P., Warner F.W., “Rigidity and convexity of hypersurfaces in spheres”, J. Differential Geometry, 4 (1970), 133–144 | DOI | MR | Zbl

[4] Duff G.F.D., Spencer D.C., “Harmonic tensors on Riemannian manifolds with boundary”, Ann. of Math., 56 (1952), 128–156 | DOI | MR | Zbl

[5] Friedrich T., Dirac operators in Riemannian geometry, Grad. Stud. Math., 25, American Mathematical Society, Providence, RI, 2000 | DOI | MR | Zbl

[6] Gallot S., Hulin D., Lafontaine J., Riemannian geometry, Universitext, 3rd ed., Springer, Berlin, 2004 | DOI | MR | Zbl

[7] Gallot S., Meyer D., “Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne”, J. Math. Pures Appl., 54 (1975), 259–284 | MR | Zbl

[8] Ginoux N., The Dirac spectrum, Lecture Notes in Math., 1976, Springer, Berlin, 2009 | DOI | MR | Zbl

[9] Hijazi O., Montiel S., “A holographic principle for the existence of parallel spinor fields and an inequality of Shi–Tam type”, Asian J. Math., 18 (2014), 489–506, arXiv: 1502.04859 | DOI | MR | Zbl

[10] Lawson Jr. H.B., Michelsohn M.-L., Spin geometry, Princeton Math. Ser., 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl

[11] Miao P., Tam L.-F., “On second variation of Wang–Yau quasi-local energy”, Ann. Henri Poincaré, 15 (2014), 1367–1402, arXiv: 1301.4656 | DOI | MR | Zbl

[12] Miao P., Tam L.-F., Xie N., “Critical points of Wang–Yau quasi-local energy”, Ann. Henri Poincaré, 12 (2011), 987–1017, arXiv: 1003.5048 | DOI | MR | Zbl

[13] Miao P., Wang X., “Boundary effect of Ricci curvature”, J. Differential Geom., 103 (2016), 59–82, arXiv: 1408.2711 | DOI | MR | Zbl

[14] Raulot S., Savo A., “A Reilly formula and eigenvalue estimates for differential forms”, J. Geom. Anal., 21 (2011), 620–640, arXiv: 1003.0817 | DOI | MR | Zbl

[15] Ros A., “Compact hypersurfaces with constant higher order mean curvatures”, Rev. Mat. Iberoamericana, 3 (1987), 447–453 | DOI | MR | Zbl

[16] Savo A., “On the first Hodge eigenvalue of isometric immersions”, Proc. Amer. Math. Soc., 133 (2005), 587–594 | DOI | MR | Zbl

[17] Schwarz G., Hodge decomposition – A method for solving boundary value problems, Lecture Notes in Math., 1607, Springer, Berlin, 1995 | DOI | MR | Zbl

[18] Shi Y., Tam L.-F., “Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature”, J. Differential Geom., 62 (2002), 79–125, arXiv: math.DG/0301047 | DOI | MR | Zbl

[19] Wang M.-T., Yau S.-T., “Isometric embeddings into the Minkowski space and new quasi-local mass”, Comm. Math. Phys., 288 (2009), 919–942, arXiv: 0805.1370 | DOI | MR | Zbl