@article{SIGMA_2023_19_a86,
author = {Pak Tung Ho and Jinwoo Shin},
title = {Deformation of the {Weighted} {Scalar} {Curvature}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a86/}
}
Pak Tung Ho; Jinwoo Shin. Deformation of the Weighted Scalar Curvature. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a86/
[1] Abedin F., Corvino J., “On the $P$-scalar curvature”, J. Geom. Anal., 27 (2017), 1589–1623 | DOI | MR | Zbl
[2] Andrade M., Cruz T., Silva Santos A., “On the $\sigma_2$-curvature and volume of compact manifolds”, Ann. Mat. Pura Appl., 202 (2023), 367–395, arXiv: 2111.08670 | DOI | MR | Zbl
[3] Bakry D., Émery M., “Diffusions hypercontractives”, Séminaire de Probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206 | DOI | MR
[4] Berger M., Ebin D., “Some decompositions of the space of symmetric tensors on a Riemannian manifold”, J. Differential Geometry, 3 (1969), 379–392 | DOI | MR | Zbl
[5] Case J.S., “Smooth metric measure spaces and quasi-Einstein metrics”, Internat. J. Math., 23 (2012), 1250110, 36 pp., arXiv: 1011.2723 | DOI | MR | Zbl
[6] Case J.S., “Smooth metric measure spaces, quasi-Einstein metrics, and tractors”, Cent. Eur. J. Math., 10 (2012), 1733–1762, arXiv: 1110.3009 | DOI | MR | Zbl
[7] Case J.S., “The weighted $\sigma_k$-curvature of a smooth metric measure space”, Pacific J. Math., 299 (2019), 339–399, arXiv: 1608.01663 | DOI | MR | Zbl
[8] Case J.S., Lin Y.-J., Yuan W., “Conformally variational Riemannian invariants”, Trans. Amer. Math. Soc., 371 (2019), 8217–8254, arXiv: 1711.05579 | DOI | MR | Zbl
[9] Case J.S., Lin Y.-J., Yuan W., “Some constructions of formally self-adjoint conformally covariant polydifferential operators”, Adv. Math., 401 (2022), 108312, 50 pp., arXiv: 2002.05874 | DOI | MR | Zbl
[10] Catino G., Mantegazza C., Mazzieri L., Rimoldi M., “Locally conformally flat quasi-Einstein manifolds”, J. Reine Angew. Math., 675 (2013), 181–189, arXiv: 1010.1418 | DOI | MR | Zbl
[11] Corvino J., “Scalar curvature deformation and a gluing construction for the Einstein constraint equations”, Comm. Math. Phys., 214 (2000), 137–189 | DOI | MR | Zbl
[12] Corvino J., Eichmair M., Miao P., “Deformation of scalar curvature and volume”, Math. Ann., 357 (2013), 551–584, arXiv: 1211.6168 | DOI | MR | Zbl
[13] Corvino J., Schoen R.M., “On the asymptotics for the vacuum Einstein constraint equations”, J. Differential Geom., 73 (2006), 185–217, arXiv: gr-qc/0301071 | DOI | MR | Zbl
[14] Cruz T., Vitório F., “Prescribing the curvature of Riemannian manifolds with boundary”, Calc. Var. Partial Differential Equations, 58 (2019), 124, 19 pp., arXiv: 1810.01311 | DOI | MR | Zbl
[15] Fischer A.E., Marsden J.E., “Deformations of the scalar curvature”, Duke Math. J., 42 (1975), 519–547 | DOI | MR | Zbl
[16] He C., Petersen P., Wylie W., “On the classification of warped product Einstein metrics”, Comm. Anal. Geom., 20 (2012), 271–311, arXiv: 1010.5488 | DOI | MR | Zbl
[17] Ho P.T., Huang Y.-C., Deformation of the scalar curvature and the mean curvature, arXiv: 2008.11893
[18] Kazdan J.L., Warner F.W., “Curvature functions for compact $2$-manifolds”, Ann. of Math., 99 (1974), 14–47 | DOI | MR | Zbl
[19] Kazdan J.L., Warner F.W., “A direct approach to the determination of Gaussian and scalar curvature functions”, Invent. Math., 28 (1975), 227–230 | DOI | MR | Zbl
[20] Kazdan J.L., Warner F.W., “Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures”, Ann. of Math., 101 (1975), 317–331 | DOI | MR | Zbl
[21] Kazdan J.L., Warner F.W., “Scalar curvature and conformal deformation of Riemannian structure”, J. Differential Geometry, 10 (1975), 113–134 | DOI | MR | Zbl
[22] Khaitan A., Weighted GJMS operators on smooth metric measure spaces, arXiv: 2203.04719
[23] Khaitan A., Weighted renormalized volume coefficients, arXiv: 2205.06018
[24] Kim D.-S., Kim Y.H., “Compact Einstein warped product spaces with nonpositive scalar curvature”, Proc. Amer. Math. Soc., 131 (2003), 2573–2576 | DOI | MR | Zbl
[25] Kobayashi O., “A differential equation arising from scalar curvature function”, J. Math. Soc. Japan, 34 (1982), 665–675 | DOI | MR | Zbl
[26] Lafontaine J., “Sur la géométrie d'une généralisation de l'équation différentielle d'Obata”, J. Math. Pures Appl., 62 (1983), 63–72 | MR | Zbl
[27] Lin Y.-J., Yuan W., “Deformations of $Q$-curvature I”, Calc. Var. Partial Differential Equations, 55 (2016), 101, 29 pp., arXiv: 1512.05389 | DOI | MR
[28] Perelman G., The entropy formula for the Ricci flow and its geometric applications, arXiv: math.DG/0211159
[29] Qing J., Yuan W., “A note on static spaces and related problems”, J. Geom. Phys., 74 (2013), 18–27, arXiv: 1212.1438 | DOI | MR | Zbl
[30] Qing J., Yuan W., “On scalar curvature rigidity of vacuum static spaces”, Math. Ann., 365 (2016), 1257–1277, arXiv: 1412.1860 | DOI | MR | Zbl
[31] Santos A.S., Andrade M., “Deformation of the $\sigma_2$-curvature”, Ann. Global Anal. Geom., 54 (2018), 71–85, arXiv: 1801.00628 | DOI | MR | Zbl