Mots-clés : spin chains
@article{SIGMA_2023_19_a85,
author = {Alexander N. Manashov},
title = {Unitarity of the {SoV} {Transform} for $\mathrm{SL}(2,\mathbb C)$ {Spin} {Chains}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a85/}
}
Alexander N. Manashov. Unitarity of the SoV Transform for $\mathrm{SL}(2,\mathbb C)$ Spin Chains. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a85/
[1] Bartels J., Lipatov L.N., Prygarin A., “Integrable spin chains and scattering amplitudes”, J. Phys. A, 44 (2011), 454013, 29 pp., arXiv: 1104.0816 | DOI | MR | Zbl
[2] Bytsko A.G., Teschner J., “Quantization of models with non-compact quantum group symmetry: modular $XXZ$ magnet and lattice sinh-Gordon model”, J. Phys. A, 39 (2006), 12927–12981, arXiv: hep-th/0602093 | DOI | MR | Zbl
[3] Cavaglià A., Gromov N., Levkovich-Maslyuk F., “Separation of variables and scalar products at any rank”, J. High Energy Phys., 2019:9 (2019), 052, 28 pp., arXiv: 1907.03788 | DOI | MR
[4] Derkachov S., Kazakov V., Olivucci E., “Basso–Dixon correlators in two-dimensional fishnet CFT”, J. High Energy Phys., 2019:4 (2019), 032, 31 pp., arXiv: 1811.10623 | DOI | MR
[5] Derkachov S., Olivucci E., “Exactly solvable magnet of conformal spins in four dimensions”, Phys. Rev. Lett., 125 (2020), 031603, 7 pp., arXiv: 1912.07588 | DOI | MR
[6] Derkachov S., Olivucci E., “Conformal quantum mechanics the integrable spinning Fishnet”, J. High Energy Phys., 2021:11 (2021), 060, 29 pp., arXiv: 2103.01940 | DOI | MR
[7] Derkachov S., Olivucci E., “Exactly solvable single-trace four point correlators in $\chi \mathrm{CFT}_4$”, J. High Energy Phys., 2021:2 (2021), 146, 86 pp., arXiv: 2007.15049 | DOI | MR | Zbl
[8] Derkachov S.E., “Baxter's $Q$-operator for the homogeneous $XXX$ spin chain”, J. Phys. A, 32 (1999), 5299–5316, arXiv: solv-int/9902015 | DOI | MR | Zbl
[9] Derkachov S.E., Korchemsky G.P., Manashov A.N., “Noncompact Heisenberg spin magnets from high-energy QCD I Baxter $Q$-operator and separation of variables”, Nuclear Phys. B, 617 (2001), 375–440, arXiv: hep-th/0107193 | DOI | MR | Zbl
[10] Derkachov S.E., Korchemsky G.P., Manashov A.N., “Baxter $\mathbb Q$-operator and separation of variables for the open $\mathrm{SL}(2,{\mathbb R})$ spin chain”, J. High Energy Phys., 2003:10 (2003), 053, 31 pp., arXiv: hep-th/0309144 | DOI | MR
[11] Derkachov S.E., Korchemsky G.P., Manashov A.N., “Separation of variables for the quantum $\mathrm{SL}(2,\mathbb R)$ spin chain”, J. High Energy Phys., 2003:7 (2003), 047, 30 pp., arXiv: hep-th/0210216 | DOI | MR
[12] Derkachov S.E., Kozlowski K.K., Manashov A.N., “On the separation of variables for the modular $XXZ$ magnet and the lattice sinh-Gordon models”, Ann. Henri Poincaré, 20 (2019), 2623–2670, arXiv: 1806.04487 | DOI | MR | Zbl
[13] Derkachov S.E., Kozlowski K.K., Manashov A.N., “Completeness of SoV representation for $\mathrm{SL}(2,\mathbb R)$ spin chains”, SIGMA, 17 (2021), 063, 26 pp., arXiv: 2102.13570 | DOI | MR
[14] Derkachov S.E., Manashov A.N., “Iterative construction of eigenfunctions of the monodromy matrix for $\mathrm{SL}(2,\mathbb C)$ magnet”, J. Phys. A, 47 (2014), 305204, 25 pp., arXiv: 1401.7477 | DOI | MR | Zbl
[15] Derkachov S.E., Manashov A.N., “Spin chains and Gustafson's integrals”, J. Phys. A, 50 (2017), 294006, 20 pp., arXiv: 1611.09593 | DOI | MR | Zbl
[16] Derkachov S.E., Manashov A.N., “On complex gamma-function integrals”, SIGMA, 16 (2020), 003, 20 pp., arXiv: 1908.01530 | DOI | MR | Zbl
[17] Derkachov S.E., Valinevich P.A., “Separation of variables for the quantum $\mathrm{SL}(3,\mathbb C)$ spin magnet: eigenfunctions of Sklyanin $B$-operator”, J. Math. Sci., 242 (2019), 658–682, arXiv: 1807.00302 | DOI | MR | Zbl
[18] Faddeev L.D., “How algebraic Bethe ansatz works for integrable model”, Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 149–219, arXiv: hep-th/9605187 | MR | Zbl
[19] Faddeev L.D., Korchemsky G.P., “High energy {QCD} as a completely integrable model”, Phys. Lett. B, 342 (1195), 311–322, arXiv: hep-th/9404173 | DOI
[20] Gel'fand I.M., Graev M.I., Retakh V.S., “Hypergeometric functions over an arbitrary field”, Russian Math. Surveys, 59 (2004), 831–905 | DOI | MR | Zbl
[21] Gel'fand I.M., Graev M.I., Vilenkin N.Y., Generalized functions, v. 5, Integral geometry and representation theory, Academic Press, New York, 1966 | MR | Zbl
[22] Gromov N., Levkovich-Maslyuk F., Ryan P., “Determinant form of correlators in high rank integrable spin chains via separation of variables”, J. High Energy Phys., 2021:5 (2021), 169, 79 pp., arXiv: 2011.08229 | DOI | MR | Zbl
[23] Gromov N., Levkovich-Maslyuk F., Sizov G., “New construction of eigenstates and separation of variables for $\mathrm {SU}(N)$ quantum spin chains”, J. High Energy Phys., 2017:9 (2017), 111, 39 pp., arXiv: 1610.08032 | DOI | MR | Zbl
[24] Gromov N., Primi N., Ryan P., “Form-factors and complete basis of observables via separation of variables for higher rank spin chains”, J. High Energy Phys., 2022:11 (2022), 039, 53 pp., arXiv: 2202.01591 | DOI | MR
[25] Gustafson R.A., “Some $q$-beta and Mellin–Barnes integrals with many parameters associated to the classical groups”, SIAM J. Math. Anal., 23 (1992), 525–551 | DOI | MR | Zbl
[26] Gustafson R.A., “Some $q$-beta and Mellin–Barnes integrals on compact Lie groups and Lie algebras”, Trans. Amer. Math. Soc., 341 (1994), 69–119 | DOI | MR | Zbl
[27] Gutzwiller M.C., “The quantum mechanical Toda lattice. II”, Ann. Physics, 133 (1981), 304–331 | DOI | MR
[28] Izergin A.G., Korepin V.E., “The quantum inverse scattering method approach to correlation functions”, Comm. Math. Phys., 94 (1984), 67–92, arXiv: cond-mat/9301031 | DOI | MR | Zbl
[29] Kharchev S., Lebedev D., “Integral representation for the eigenfunctions of a quantum periodic Toda chain”, Lett. Math. Phys., 50 (1999), 53–77, arXiv: hep-th/9910265 | DOI | MR | Zbl
[30] Kharchev S., Lebedev D., “Integral representations for the eigenfunctions of quantum open and periodic Toda chains from the QISM formalism”, J. Phys. A, 34 (2001), 2247–2258, arXiv: hep-th/0007040 | DOI | MR | Zbl
[31] Kitanine N., Maillet J.M., Terras V., “Correlation functions of the $XXZ$ Heisenberg spin-$\frac{1}{2}$ chain in a magnetic field”, Nuclear Phys. B, 567 (2000), 554–582, arXiv: math-ph/9907019 | DOI | MR | Zbl
[32] Korepin V.E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[33] Kozlowski K.K., “Unitarity of the SoV transform for the Toda chain”, Comm. Math. Phys., 334 (2015), 223–273, arXiv: 1306.4967 | DOI | MR | Zbl
[34] Kulish P.P., Sklyanin E.K., “Quantum spectral transform method. Recent developments”, Integrable Quantum Field Theories (Tvärminne, 1981), Lecture Notes in Phys., 151, Springer, Berlin, 1982, 61–119 | DOI | MR
[35] Lipatov L.N., “High-energy scattering in QCD and in quantum gravity and two-dimensional field theories”, Nuclear Phys. B, 365 (1991), 614–632 | DOI | MR
[36] Lipatov L.N., “Asymptotic behavior of multicolor QCD at high energies in connection with exactly solvable spin models”, JETP Lett., 59 (1994), 596–599\, arXiv: hep-th/9311037
[37] Lipatov L.N., “Integrability of scattering amplitudes in $\mathcal{N}=4$ SUSY”, J. Phys. A, 42 (2009), 304020, 25 pp., arXiv: 0902.1444 | DOI | MR | Zbl
[38] Maillet J.M., Niccoli G., “On quantum separation of variables”, J. Math. Phys., 59 (2018), 091417, 47 pp., arXiv: 1807.11572 | DOI | MR | Zbl
[39] Maillet J.M., Niccoli G., “Complete spectrum of quantum integrable lattice models associated to $\mathcal U_q(\widehat{{\mathfrak{gl}}_n)}$ by separation of variables”, J. Phys. A, 52 (2019), 315203, 39 pp., arXiv: 1811.08405 | DOI | MR | Zbl
[40] Maillet J.M., Niccoli G., “On quantum separation of variables beyond fundamental representations”, SciPost Phys., 10 (2021), 026, 38 pp., arXiv: 1903.06618 | DOI | MR
[41] Maillet J.M., Niccoli G., Vignoli L., “On scalar products in higher rank quantum separation of variables”, SciPost Phys., 9 (2020), 086, 64 pp., arXiv: 2003.04281 | DOI | MR
[42] Ryan P., Integrable systems, separation of variables and the Yang–Baxter equation, Ph.D. Thesis, Trinity College Dublin, 2021\, arXiv: 2201.12057 | Zbl
[43] Ryan P., Volin D., “Separated variables and wave functions for rational $\mathfrak{gl}(N)$ spin chains in the companion twist frame”, J. Math. Phys., 60 (2019), 032701, 23 pp., arXiv: 1810.10996 | DOI | MR | Zbl
[44] Ryan P., Volin D., “Separation of variables for rational $\mathfrak{gl}(n)$ spin chains in any compact representation, via fusion, embedding morphism and Bäcklund flow”, Comm. Math. Phys., 383 (2021), 311–343, arXiv: 2002.12341 | DOI | MR | Zbl
[45] Sarkissian G.A., “Elliptic and complex hypergeometric integrals in quantum field theory”, Phys. Part. Nuclei Lett., 20 (2023), 281–286 | DOI
[46] Semenov-Tian-Shansky M.A., “Quantization of open Toda lattices”, Dynamical Systems VII, Encyclopaedia Math. Sci., Springer, Berlin, 1994, 226–259 | DOI
[47] Silantyev A.V., “Transition function for the Toda chain”, Teoret. and Math. Phys., 150 (2007), 315–331, arXiv: nlin.SI/0603017 | DOI | MR | Zbl
[48] Sklyanin E.K., “The quantum Toda chain”, Nonlinear Equations in Classical and Quantum Field Theory (Meudon/Paris, 1983/1984), Lecture Notes in Phys., 226, Springer, Berlin, 1985 | DOI | MR
[49] Sklyanin E.K., “Quantum inverse scattering method. Selected topics”, Quantum Group and Quantum Integrable Systems, Nankai Lectures Math. Phys., World Scientific, River Edge, NJ, 1992, 63–97 | MR
[50] Sklyanin E.K., Tahtadzhan L.A., Faddeev L.D., “Quantum inverse problem method. I”, Teoret. and Math. Phys., 40 (1980), 688–706 | DOI | MR | Zbl
[51] Slavnov N.A., “Calculation of scalar products of wave functions and form-factors in the framework of the algebraic Bethe ansatz”, Teoret. and Math. Phys., 79 (1989), 232–240 | DOI | MR
[52] Tahtadzhan L.A., Faddeev L.D., “The quantum method for the inverse problem and the $XYZ$ Heisenberg model”, Russian Math. Surveys, 34:5 (1979), 11–68 | DOI | MR
[53] Valinevich P.A., Derkachev S.E., Kulish P.P., Uvarov E.M., “Construction of eigenfunctions for a system of quantum minors of the monodromy matrix for an $\mathrm{SL}(n,\mathbb{C})$-invariant spin chain”, Teoret. and Math. Phys., 189 (2016), 1529–1553 | DOI | MR | Zbl
[54] Wallach N.R., Real reductive groups, v. II, Pure Appl. Math., 132, Academic Press, Inc., Boston, MA, 1992 | MR | Zbl