Mots-clés : boson-fermion correspondence
@article{SIGMA_2023_19_a84,
author = {Zhiyuan Wang and Chenglang Yang},
title = {Diagonal {Tau-Functions} of {2D} {Toda} {Lattice} {Hierarchy,} {Connected} $(n,m)${-Point} {Functions,} and {Double} {Hurwitz} {Numbers}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a84/}
}
TY - JOUR AU - Zhiyuan Wang AU - Chenglang Yang TI - Diagonal Tau-Functions of 2D Toda Lattice Hierarchy, Connected $(n,m)$-Point Functions, and Double Hurwitz Numbers JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a84/ LA - en ID - SIGMA_2023_19_a84 ER -
%0 Journal Article %A Zhiyuan Wang %A Chenglang Yang %T Diagonal Tau-Functions of 2D Toda Lattice Hierarchy, Connected $(n,m)$-Point Functions, and Double Hurwitz Numbers %J Symmetry, integrability and geometry: methods and applications %D 2023 %V 19 %U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a84/ %G en %F SIGMA_2023_19_a84
Zhiyuan Wang; Chenglang Yang. Diagonal Tau-Functions of 2D Toda Lattice Hierarchy, Connected $(n,m)$-Point Functions, and Double Hurwitz Numbers. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a84/
[1] Balogh F., Yang D., “Geometric interpretation of Zhou's explicit formula for the Witten–Kontsevich tau function”, Lett. Math. Phys., 107 (2017), 1837–1857, arXiv: 1412.4419 | DOI | MR | Zbl
[2] Borot G., Eynard B., Mulase M., Safnuk B., “A matrix model for simple Hurwitz numbers, and topological recursion”, J. Geom. Phys., 61 (2011), 522–540, arXiv: 0906.1206 | DOI | MR | Zbl
[3] Bouchard V., Mariño M., “Hurwitz numbers, matrix models and enumerative geometry”, From Hodge Theory to Integrability and TQFT $tt^*$-Geometry, Proc. Sympos. Pure Math., 78, American Mathematical Society, Providence, RI, 2008, 263–283, arXiv: 0709.1458 | DOI | MR | Zbl
[4] Bychkov B., Dunin-Barkowski P., Kazarian M., Shadrin S., “Explicit closed algebraic formulas for Orlov–Scherbin $n$-point functions”, J. Éc. Polytech. Math., 9 (2022), 1121–1158, arXiv: 2008.13123 | DOI | MR | Zbl
[5] Carrell S.R., “Diagonal solutions to the 2-Toda hierarchy”, Math. Res. Lett., 22 (2015), 439–465, arXiv: 1109.1451 | DOI | MR | Zbl
[6] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations. IV A new hierarchy of soliton equations of KP-type”, Phys. D, 4 (1982), 343–365 | DOI | MR | Zbl
[7] Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Publ. Math. Inst. Hautes Études Sci., 1969, 75–109 | DOI | MR | Zbl
[8] Dijkgraaf R., “Mirror symmetry and elliptic curves”, The Moduli Space of Curves (Texel Island, 1994), Progr. Math., 129, Birkhäuser, Boston, MA, 1995, 149–163 | DOI | MR | Zbl
[9] Ekedahl T., Lando S., Shapiro M., Vainshtein A., “On Hurwitz numbers and Hodge integrals”, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1175–1180, arXiv: math.AG/9902104 | DOI | MR | Zbl
[10] Ekedahl T., Lando S., Shapiro M., Vainshtein A., “Hurwitz numbers and intersections on moduli spaces of curves”, Invent. Math., 146 (2001), 297–327, arXiv: math.AG/0004096 | DOI | MR | Zbl
[11] Eskin A., Okounkov A., Pandharipande R., “The theta characteristic of a branched covering”, Adv. Math., 217 (2008), 873–888, arXiv: math.AG/0312186 | DOI | MR | Zbl
[12] Fulton W., Harris J., Representation theory. A first course, Grad. Texts in Math., 129, Springer, New York, 1991 | DOI | MR | Zbl
[13] Giacchetto A., Kramer R., Lewański D., A new spin on Hurwitz theory and ELSV via theta characteristics, arXiv: 2104.05697
[14] Goulden I.P., Guay-Paquet M., Novak J., “Monotone Hurwitz numbers and the HCIZ integral”, Ann. Math. Blaise Pascal, 21 (2014), 71–89, arXiv: 1107.1015 | DOI | MR | Zbl
[15] Goulden I.P., Guay-Paquet M., Novak J., “Toda equations and piecewise polynomiality for mixed double Hurwitz numbers”, SIGMA, 12 (2016), 040, 10 pp., arXiv: 1307.2137 | DOI | MR | Zbl
[16] Goulden I.P., Jackson D.M., Vakil R., “Towards the geometry of double Hurwitz numbers”, Adv. Math., 198 (2005), 43–92, arXiv: math.AG/0309440 | DOI | MR | Zbl
[17] Graber T., Vakil R., “Hodge integrals and Hurwitz numbers via virtual localization”, Compos. Math., 135 (2003), 25–36, arXiv: math.AG/0003028 | DOI | MR | Zbl
[18] Gukov S., Suł kowski P., “A-polynomial, B-model, and quantization”, J. High Energy Phys., 2012:2 (2012), 070, 56 pp., arXiv: 1108.0002 | DOI | MR | Zbl
[19] Harnad J., Balogh F., Tau functions and their applications, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2021 | DOI | MR | Zbl
[20] Hurwitz A., “Über die Anzahl der Riemann'schen Flächen mit gegebenen Verzweigungspunkten”, Math. Ann., 55 (1901), 53–66 | DOI | MR
[21] Ji C., Wang Z., Yang C., “Kac–Schwarz operators of type $B$, quantum spectral curves, and spin Hurwitz numbers”, J. Geom. Phys., 189 (2023), 104831, 20 pp., arXiv: 2211.08687 | DOI | MR | Zbl
[22] Jimbo M., Miwa T., “Solitons and infinite-dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19 (1983), 943–1001 | DOI | MR | Zbl
[23] Johnson P., “Double Hurwitz numbers via the infinite wedge”, Trans. Amer. Math. Soc., 367 (2015), 6415–6440, arXiv: 1008.3266 | DOI | MR | Zbl
[24] Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl
[25] Kac V.G., van de Leur J.W., “The $n$-component KP hierarchy and representation theory”, J. Math. Phys., 44 (2003), 3245–3293, arXiv: hep-th/9308137 | DOI | MR | Zbl
[26] Knudsen F.F., “The projectivity of the moduli space of stable curves. II The stacks $M_{g,n}$”, Math. Scand., 52 (1983), 161–199 | DOI | MR | Zbl
[27] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147 (1992), 1–23 | DOI | MR | Zbl
[28] Macdonald I.G., Symmetric functions and Hall polynomials, Oxford Math. Monogr., 2nd ed., The Clarendon Press, New York, 1995 | MR
[29] Miwa T., Jimbo M., Date E., Solitons. Differential equations, symmetries and infinite-dimensional algebras, Cambridge Tracts in Math., 135, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[30] Okounkov A., “Toda equations for Hurwitz numbers”, Math. Res. Lett., 7 (2000), 447–453, arXiv: math.AG/0004128 | DOI | MR | Zbl
[31] Okounkov A., “Infinite wedge and random partitions”, Selecta Math. (N.S.), 7 (2001), 57–81, arXiv: math.RT/9907127 | DOI | MR | Zbl
[32] Okounkov A., Pandharipande R., “The equivariant Gromov–Witten theory of ${P}^1$”, Ann. of Math., 163 (2006), 561–605, arXiv: math.AG/0207233 | DOI | MR | Zbl
[33] Okounkov A., Pandharipande R., “Gromov–Witten theory, Hurwitz theory, and completed cycles”, Ann. of Math., 163 (2006), 517–560, arXiv: math.AG/0204305 | DOI | MR | Zbl
[34] Pandharipande R., “The Toda equations and the Gromov–Witten theory of the Riemann sphere”, Lett. Math. Phys., 53 (2000), 59–74, arXiv: math.AG/9912166 | DOI | MR
[35] Rota G.C., “On the foundations of combinatorial theory. I Theory of Möbius functions”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 2 (1964), 340–368 | DOI | MR | Zbl
[36] Sato M., Sato Y., “Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold”, Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), North-Holland Math. Stud., 81, North-Holland, Amsterdam, 1983, 259–271 | DOI | MR | Zbl
[37] Segal G., Wilson G., “Loop groups and equations of KdV type”, Publ. Math. Inst. Hautes Études Sci., 61 (1985), 5–65 | DOI | MR | Zbl
[38] Shadrin S., Spitz L., Zvonkine D., “On double Hurwitz numbers with completed cycles”, J. Lond. Math. Soc., 86 (2012), 407–432, arXiv: 1103.3120 | DOI | MR | Zbl
[39] Takebe T., “Toda lattice hierarchy and conservation laws”, Comm. Math. Phys., 129 (1990), 281–318 | DOI | MR | Zbl
[40] Ueno K., Takasaki K., “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., 4, North-Holland, Amsterdam, 1984, 1–95 | DOI | MR
[41] Wang Z., Yang C., “BKP hierarchy, affine coordinates, and a formula for connected bosonic $n$-point functions”, Lett. Math. Phys., 112 (2022), 62, 42 pp., arXiv: 2201.08178 | DOI | MR | Zbl
[42] Wang Z., Yang C., “Connected $(n,m)$-point functions of diagonal 2-BKP tau-functions and spin double Hurwitz numbers”, J. Math. Phys., 64 (2023), 041702, 17 pp., arXiv: 2210.09576 | DOI | MR | Zbl
[43] Wang Z., Yang C., Zhang Q., BKP-affine coordinates and emergent geometry of generalized Brézin–Gross–Witten tau-functions, arXiv: 2301.01131
[44] Witten E., “Two-dimensional gravity and intersection theory on moduli space”, Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh University, Bethlehem, PA, 1991, 243–310 | DOI | MR
[45] Zhou J., Hodge integrals, Hurwitz numbers, and symmetric groups, arXiv: math.AG/0308024 | Zbl
[46] Zhou J., Explicit formula for Witten–Kontsevich tau-function, arXiv: 1306.5429 | Zbl
[47] Zhou J., Emergent geometry and mirror symmetry of a point, arXiv: 1507.01679 | Zbl