@article{SIGMA_2023_19_a83,
author = {Decio Levi and Miguel A. Rodr{\'\i}guez},
title = {Non-Existence of {S-Integrable} {Three-Point} {Partial} {Difference} {Equations} in the {Lattice} {Plane}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a83/}
}
TY - JOUR AU - Decio Levi AU - Miguel A. Rodríguez TI - Non-Existence of S-Integrable Three-Point Partial Difference Equations in the Lattice Plane JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a83/ LA - en ID - SIGMA_2023_19_a83 ER -
%0 Journal Article %A Decio Levi %A Miguel A. Rodríguez %T Non-Existence of S-Integrable Three-Point Partial Difference Equations in the Lattice Plane %J Symmetry, integrability and geometry: methods and applications %D 2023 %V 19 %U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a83/ %G en %F SIGMA_2023_19_a83
Decio Levi; Miguel A. Rodríguez. Non-Existence of S-Integrable Three-Point Partial Difference Equations in the Lattice Plane. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a83/
[1] Abellanas L., Galindo A., “Conserved densities for nonlinear evolution equations. I. Even order case”, J. Math. Phys., 20 (1979), 1239–1243 | DOI | MR | Zbl
[2] Adler V.E., “Legendre transformations on a triangular lattice”, Funct. Anal. Appl., 34 (2000), 1–9 | DOI | MR | Zbl
[3] Adler V.E., Bobenko A.I., Suris Yu.B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543 | DOI | MR | Zbl
[4] Calogero F., Why are certain nonlinear PDEs both widely applicable and integrable?, What is Integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 1–62 | DOI | MR | Zbl
[5] Calogero F., Eckhaus W., “Necessary conditions for integrability of nonlinear PDEs”, Inverse Problems, 3 (1987), L27–L32 | DOI | MR | Zbl
[6] Calogero F., Eckhaus W., “Nonlinear evolution equations, rescalings, model PDEs and their integrability. I”, Inverse Problems, 3 (1987), 229–262 | DOI | MR | Zbl
[7] Dynnikov I.A., Novikov S.P., “Geometry of the triangle equation on two-manifolds”, Mosc. Math. J., 3 (2003), 419–438, arXiv: math-ph/0208041 | DOI | MR | Zbl
[8] Garifullin R.N., Yamilov R.I., “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A, 45 (2012), 345205, 23 pp., arXiv: 1203.4369 | DOI | MR | Zbl
[9] Hansen P.C., Discrete inverse problems: Insight and algorithms, Fundamentals of Algorithms, 7, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010 | DOI | MR | Zbl
[10] Hietarinta J., Joshi N., Nijhoff F.W., Discrete systems and integrability, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl
[11] Levi D., Ragnisco O., Bruschi M., “Continuous and discrete matrix Burgers' hierarchies”, Nuovo Cimento B, 74 (1983), 33–51 | DOI | MR
[12] Levi D., Rodríguez M.A., “Yamilov's theorem for differential and difference equations”, Ufa Math. J., 13 (2021), 152–159 | DOI | MR | Zbl
[13] Levi D., Scimiterna C., “Linearizability of nonlinear equations on a quad-graph by a point, two points and generalized Hopf–Cole transformations”, SIGMA, 7 (2011), 079, 24 pp., arXiv: 1108.3648 | DOI | MR | Zbl
[14] Levi D., Winternitz P., Yamilov R.I., Continuous symmetries and integrability of discrete equations, CRM Monogr. Ser., 38, American Mathematical Society, Providence, RI, 2022 | MR
[15] Levi D., Yamilov R.I., “Generalized symmetry integrability test for discrete equations on the square lattice”, J. Phys. A, 44 (2011), 145207, 22 pp., arXiv: 1011.0070 | DOI | MR | Zbl
[16] Mikhailov A.V., Shabat A.B., Yamilov R.I., “The symmetry approach to the classification of nonlinear equations. Complete lists of integrable systems”, Russian Math. Surveys, 42:4 (1987), 1–65 | DOI | MR
[17] Moritz B., Schwalm W., “Triangle lattice Green functions for vector fields”, J. Phys. A, 34 (2001), 589–602 | DOI | MR | Zbl
[18] Novikov S.P., Discrete connections on the triangulated manifolds and difference linear equations, arXiv: math-ph/0303035
[19] Schwalm W., Moritz B., Giona M., Schwalm M., “Vector difference calculus for physical lattice models”, Phys. Rev. E, 59 (1999), 1217–1233 | DOI | MR
[20] Scimiterna C., Levi D., “Three-point partial difference equations linearizable by local and nonlocal transformations”, J. Phys. A, 46 (2013), 025205, 13 pp. | DOI | MR
[21] Svinolupov S.I., Sokolov V.V., “Weak nonlocalities in evolution equations”, Math. Notes, 48 (1990), 1234–1239 | DOI | MR | Zbl
[22] van der Kamp P.H., “Initial value problems for lattice equations”, J. Phys. A, 42 (2009), 404019, 16 pp. | DOI | MR | Zbl
[23] Williams R.M., “Discrete quantum gravity”, J. Phys. Conf. Ser., 33 (2006), 38–48 | DOI