@article{SIGMA_2023_19_a80,
author = {Yu Du and Gabriel Kosmacher and Yichen Liu and Jeff Massman and Joseph Palmer and Timothy Thieme and Jerry Wu and Zheyu Zhang},
title = {Packing {Densities} of {Delzant} and {Semitoric} {Polygons}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a80/}
}
TY - JOUR AU - Yu Du AU - Gabriel Kosmacher AU - Yichen Liu AU - Jeff Massman AU - Joseph Palmer AU - Timothy Thieme AU - Jerry Wu AU - Zheyu Zhang TI - Packing Densities of Delzant and Semitoric Polygons JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a80/ LA - en ID - SIGMA_2023_19_a80 ER -
%0 Journal Article %A Yu Du %A Gabriel Kosmacher %A Yichen Liu %A Jeff Massman %A Joseph Palmer %A Timothy Thieme %A Jerry Wu %A Zheyu Zhang %T Packing Densities of Delzant and Semitoric Polygons %J Symmetry, integrability and geometry: methods and applications %D 2023 %V 19 %U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a80/ %G en %F SIGMA_2023_19_a80
Yu Du; Gabriel Kosmacher; Yichen Liu; Jeff Massman; Joseph Palmer; Timothy Thieme; Jerry Wu; Zheyu Zhang. Packing Densities of Delzant and Semitoric Polygons. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a80/
[1] Alonso J., Dullin H.R., Hohloch S., “Taylor series and twisting-index invariants of coupled spin-oscillators”, J. Geom. Phys., 140 (2019), 131–151, arXiv: 1712.06402 | DOI | MR | Zbl
[2] Alonso J., Dullin H.R., Hohloch S., “Symplectic classification of coupled angular momenta”, Nonlinearity, 33 (2020), 417–468, arXiv: 1808.05849 | DOI | MR | Zbl
[3] Alonso J., Hohloch S., Palmer J., The twisting index in semitoric systems, arXiv: 2309.16614
[4] Atiyah M.F., “Convexity and commuting Hamiltonians”, Bull. Lond. Math. Soc., 14 (1982), 1–15 | DOI | MR | Zbl
[5] Bolsinov A.V., Fomenko A.T., Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004 | DOI | MR | Zbl
[6] Casals R., Vianna R., “Full ellipsoid embeddings and toric mutations”, Selecta Math. (N.S.), 28 (2022), 61, 62 pp., arXiv: 2004.13232 | DOI | MR
[7] Cieliebak K., Hofer H., Latschev J., Schlenk F., “Quantitative symplectic geometry”, Dynamics, Ergodic Theory, and Geometry, Math. Sci. Res. Inst. Publ., 54, Cambridge University Press, Cambridge, 2007, 1–44, arXiv: math.SG/0506191 | DOI | MR | Zbl
[8] Cristofaro-Gardiner D., Holm T., Mandini A., Pires A.R., On infinite staircases in toric symplectic four-manifolds, arXiv: 2004.13062
[9] De Meulenaere A., Hohloch S., “A family of semitoric systems with four focus-focus singularities and two double pinched tori”, J. Nonlinear Sci., 31 (2021), 66, 56 pp., arXiv: 1911.11883 | DOI | MR | Zbl
[10] Delzant T., “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. Math. France, 116 (1988), 315–339 | DOI | MR | Zbl
[11] Du Y., Kosmacher G., Liu Y., Massman J., Palmer J., Thieme T., Wu J., Zhang Z., Semitoric packing capacity https://github.com/CoulsonZhang/Semi-toric_Packing_Capacity
[12] Duistermaat J.J., Heckman G.J., “On the variation in the cohomology of the symplectic form of the reduced phase space”, Invent. Math., 69 (1982), 259–268 | DOI | MR | Zbl
[13] Ekeland I., Hofer H., “Symplectic topology and Hamiltonian dynamics”, Math. Z., 200 (1989), 355–378 | DOI | MR | Zbl
[14] Farley C., Holm T., Magill N., Schroder J., Weiler M., Wang Z., Zabelina E., Four-periodic infinite staircases for four-dimensional polydisks, arXiv: 2210.15069
[15] Figalli A., Palmer J., Pelayo Á., “Symplectic $G$-capacities and integrable systems”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 65–103, arXiv: 1511.04499 | DOI | MR | Zbl
[16] Gromov M., “Pseudo holomorphic curves in symplectic manifolds”, Invent. Math., 82 (1985), 307–347 | DOI | MR | Zbl
[17] Guillemin V., Sternberg S., “Convexity properties of the moment mapping”, Invent. Math., 67 (1982), 491–513 | DOI | MR | Zbl
[18] Hofer H., “Symplectic capacities”, Geometry of Low-Dimensional Manifolds, (2) (Durham, 1989), London Math. Soc. Lecture Note Ser., 151, Cambridge University Press, Cambridge, 1990, 15–34 | MR
[19] Hohloch S., Palmer J., “A family of compact semitoric systems with two focus-focus singularities”, J. Geom. Mech., 10 (2018), 331–357, arXiv: 1710.05746 | DOI | MR | Zbl
[20] Hohloch S., Palmer J., Extending compact Hamiltonian $S^1$-spaces to integrable systems with mild degeneracies in dimension four, arXiv: 2105.00523
[21] Hohloch S., Sabatini S., Sepe D., “From compact semi-toric systems to Hamiltonian $S^1$-spaces”, Discrete Contin. Dyn. Syst., 35 (2015), 247–281, arXiv: 1305.7040 | DOI | MR | Zbl
[22] Hwang T., Suh D.Y., “Symplectic capacities from Hamiltonian circle actions”, J. Symplectic Geom., 15 (2017), 785–802, arXiv: 1305.2989 | DOI | MR | Zbl
[23] Kane D.M., Palmer J., Pelayo Á., “Classifying toric and semitoric fans by lifting equations from ${\rm SL}_2(\mathbb Z)$”, SIGMA, 14 (2018), 016, 43 pp., arXiv: 1502.07698 | DOI | MR | Zbl
[24] Kane D.M., Palmer J., Pelayo Á., “Minimal models of compact symplectic semitoric manifolds”, J. Geom. Phys., 125 (2018), 49–74, arXiv: 1610.05423 | DOI | MR | Zbl
[25] Karshon Y., Lerman E., “Non-compact symplectic toric manifolds”, SIGMA, 11 (2015), 055, 37 pp., arXiv: 0907.2891 | DOI | MR | Zbl
[26] Le Floch Y., Palmer J., Semitoric families, Mem. Amer. Math. Soc. (to appear) , arXiv: 1810.06915
[27] Le Floch Y., Palmer J., Families of four-dimensional integrable systems with $S^1$-symmetries, arXiv: 2307.10670
[28] Le Floch Y., Pelayo Á., “Symplectic geometry and spectral properties of classical and quantum coupled angular momenta”, J. Nonlinear Sci., 29 (2019), 655–708, arXiv: 1607.05419 | DOI | MR | Zbl
[29] Le Floch Y., Pelayo Á., Vũ Ngọc S., “Inverse spectral theory for semiclassical Jaynes–Cummings systems”, Math. Ann., 364 (2016), 1393–1413, arXiv: 1407.5159 | DOI | MR | Zbl
[30] Le Floch Y., Vũ Ngọc S., The inverse spectral problem for quantum semitoric systems, arXiv: 2104.06704
[31] Magill N., Unobstructed embeddings in Hirzebruch surfaces, arXiv: 2204.12460
[32] Magill N., McDuff D., Weiler M., Staircase patterns in Hirzebruch surfaces, arXiv: 2203.06453
[33] McDuff D., Schlenk F., “The embedding capacity of 4-dimensional symplectic ellipsoids”, Ann. of Math., 175 (2012), 1191–1282, arXiv: 0912.0532 | DOI | MR | Zbl
[34] Palmer J., “Moduli spaces of semitoric systems”, J. Geom. Phys., 115 (2017), 191–217, arXiv: 1502.07296 | DOI | MR | Zbl
[35] Palmer J., Pelayo Á., Tang X., Semitoric systems of non-simple type, arXiv: 1909.03501
[36] Pelayo Á., “Toric symplectic ball packing”, Topology Appl., 153 (2006), 3633–3644, arXiv: 0704.1034 | DOI | MR | Zbl
[37] Pelayo Á., “Topology of spaces of equivariant symplectic embeddings”, Proc. Amer. Math. Soc., 135 (2007), 277–288, arXiv: 0704.1033 | DOI | MR | Zbl
[38] Pelayo Á., Ratiu T.S., Vũ Ngọc S., “The affine invariant of proper semitoric integrable systems”, Nonlinearity, 30 (2017), 3993–4028 | DOI | MR | Zbl
[39] Pelayo Á., Schmidt B., Maximal ball packings of symplectic-toric manifolds, Int. Math. Res. Not., 2008, 2008, 24 pp. | DOI | MR | Zbl
[40] Pelayo Á., Vũ Ngọc S., “Semitoric integrable systems on symplectic 4-manifolds”, Invent. Math., 177 (2009), 571–597, arXiv: 0806.1946 | DOI | MR | Zbl
[41] Pelayo Á., Vũ Ngọc S., “Constructing integrable systems of semitoric type”, Acta Math., 206 (2011), 93–125, arXiv: 0903.3376 | DOI | MR | Zbl
[42] Pelayo Á., Vũ Ngọc S., “Hamiltonian dynamics and spectral theory for spin-oscillators”, Comm. Math. Phys., 309 (2012), 123–154, arXiv: 1005.0439 | DOI | MR | Zbl
[43] Sadovskií D.A., Zĥilinskií B.I., “Monodromy, diabolic points, and angular momentum coupling”, Phys. Lett. A, 256 (1999), 235–244 | DOI | MR | Zbl
[44] Symington M., “Four dimensions from two in symplectic topology”, Topology and Geometry of Manifolds, Proc. Sympos. Pure Math., 71, American Mathematical Society, Providence, RI, 2003, 153–208, arXiv: math.SG/0210033 | DOI | MR | Zbl
[45] Vũ Ngọc S., “Moment polytopes for symplectic manifolds with monodromy”, Adv. Math., 208 (2007), 909–934, arXiv: math.SG/0504165 | DOI | MR | Zbl