@article{SIGMA_2023_19_a8,
author = {Murad Alim and Lotte Hollands and Iv\'an Tulli},
title = {Quantum {Curves,} {Resurgence} and {Exact} {WKB}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a8/}
}
Murad Alim; Lotte Hollands; Iván Tulli. Quantum Curves, Resurgence and Exact WKB. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a8/
[1] Aganagic M., Cheng M.C.N., Dijkgraaf R., Krefl D., Vafa C., “Quantum geometry of refined topological strings”, J. High Energy Phys., 2012:11 (2012), 019, 53 pp., arXiv: 1105.0630 | DOI | MR
[2] Aganagic M., Dijkgraaf R., Klemm A., Mariño M., Vafa C., “Topological strings and integrable hierarchies”, Comm. Math. Phys., 261 (2006), 451–516, arXiv: hep-th/0312085 | DOI | MR
[3] Aganagic M., Vafa C., Mirror symmetry, D-branes and counting holomorphic discs, arXiv: hep-th/0012041
[4] Aganagic M., Yamazaki M., “Open BPS wall crossing and M-theory”, Nuclear Phys. B, 834 (2010), 258–272, arXiv: 0911.5342 | DOI | MR
[5] Alexandrov S., Persson D., Pioline B., “Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence”, J. High Energy Phys., 2011:12 (2011), 027, 65 pp., arXiv: 1110.0466 | DOI | MR
[6] Alim M., “Difference equation for the Gromov–Witten potential of the resolved conifold”, J. Geom. Phys., 183 (2023), 104688, 4 pp., arXiv: 2011.12759 | DOI | MR
[7] Alim M., Intrinsic non-perturbative topological strings, arXiv: 2102.07776
[8] Alim M., Saha A., “On the integrable hierarchy for the resolved conifold”, Bull. Lond. Math. Soc., 54 (2022), 2014–2031, arXiv: 2101.11672 | DOI | MR
[9] Alim M., Saha A., Teschner J., Tulli I., “Mathematical structures of non-perturbative topological string theory: from GW to DT invariants”, Comm. Math. Phys. (to appear) , arXiv: 2109.06878 | DOI | MR
[10] Alim M., Saha A., Tulli I., “A hyperkähler geometry associated to the BPS structure of the resolved conifold”, J. Geom. Phys., 180 (2022), 104618, 32 pp., arXiv: 2106.11976 | DOI | MR
[11] Aniceto I., Schiappa R., Vonk M., “The resurgence of instantons in string theory”, Commun. Number Theory Phys., 6 (2012), 339–496, arXiv: 1106.5922 | DOI | MR
[12] Banerjee S., Longhi P., Romo M., “Exploring 5d BPS spectra with exponential networks”, Ann. Henri Poincaré, 20 (2019), 4055–4162, arXiv: 1811.02875 | DOI | MR
[13] Banerjee S., Longhi P., Romo M., “Exponential BPS graphs and D brane counting on toric Calabi–Yau threefolds: Part I”, Comm. Math. Phys., 388 (2021), 893–945, arXiv: 1910.05296 | DOI | MR
[14] Banerjee S., Longhi P., Romo M., Exponential BPS graphs and D brane counting on toric Calabi–Yau threefolds: Part II, arXiv: 2012.09769
[15] Banerjee S., Longhi P., Romo M., “A-branes, foliations and localization”, Ann. Henri Poincaré (to appear) , arXiv: 2201.12223 | DOI
[16] Barnes E., “On the theory of multiple gamma function”, Trans. Cambridge Philos. Soc., 19, 1904, 374–425
[17] Benini F., Benvenuti S., Tachikawa Y., “Webs of five-branes and ${\mathcal N}=2$ superconformal field theories”, J. High Energy Phys., 2009:9 (2009), 052, 33 pp., arXiv: 0906.0359 | DOI | MR
[18] Bershadsky M., Cecotti S., Ooguri H., Vafa C., “Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes”, Comm. Math. Phys., 165 (1994), 311–427, arXiv: hep-th/9309140 | DOI | MR
[19] Bonelli G., Grassi A., Tanzini A., “Quantum curves and $q$-deformed Painlevé equations”, Lett. Math. Phys., 109 (2019), 1961–2001, arXiv: 1710.11603 | DOI | MR
[20] Bridgeland T., “Riemann–Hilbert problems from Donaldson–Thomas theory”, Invent. Math., 216 (2019), 69–124, arXiv: 1611.03697 | DOI | MR
[21] Bridgeland T., “Riemann–Hilbert problems for the resolved conifold”, J. Differential Geom., 115 (2020), 395–435, arXiv: 1703.02776 | DOI | MR
[22] Bullimore M., Kim H.-C., Koroteev P., “Defects and quantum Seiberg–Witten geometry”, J. High Energy Phys., 2015:5 (2015), 095, 78 pp., arXiv: 1412.6081 | DOI | MR
[23] Ceresole A., D'Auria R., Ferrara S., Lerche W., Louis J., “Picard–Fuchs equations and special geometry”, Internat. J. Modern Phys. A, 8 (1993), 79–113, arXiv: hep-th/9204035 | DOI | MR
[24] Chiang T.-M., Klemm A., Yau S.-T., Zaslow E., “Local mirror symmetry: calculations and interpretations”, Adv. Theor. Math. Phys., 3 (1999), 495–565, arXiv: hep-th/9903053 | DOI | MR
[25] Chuang W.-Y., Quantum Riemann–Hilbert problems for the resolved conifold, arXiv: 2203.00294
[26] Coman I., Longhi P., Teschner J., “From quantum curves to topological string partition functions”, Comm. Math. Phys. (to appear) , arXiv: 1811.01978 | DOI
[27] Coman I., Longhi P., Teschner J., From quantum curves to topological string partition functions II, arXiv: 2004.04585
[28] Couso-Santamaría R., Resurgence in topological string theory, Ph.D. Thesis, Universidade de Santiago de Compostela, 2014 http://hdl.handle.net/10347/11868
[29] Couso-Santamaría R., Edelstein J.D., Schiappa R., Vonk M., “Resurgent transseries and the holomorphic anomaly: nonperturbative closed strings in local ${\mathbb{CP}}^2$”, Comm. Math. Phys., 338 (2015), 285–346, arXiv: 1407.4821 | DOI | MR
[30] Couso-Santamaría R., Mariño M., Schiappa R., “Resurgence matches quantization”, J. Phys. A, 50 (2017), 145402, 34 pp., arXiv: 1610.06782 | DOI | MR
[31] Couso-Santamaría R., Schiappa R., Vaz R., “On asymptotics and resurgent structures of enumerative Gromov–Witten invariants”, Commun. Number Theory Phys., 11 (2017), 707–790, arXiv: 1605.07473 | DOI | MR
[32] Cox D.A., Katz S., Mirror symmetry and algebraic geometry, Math. Surveys Monogr., 68, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR
[33] Dimofte T., Gaiotto D., Gukov S., “Gauge theories labelled by three-manifolds”, Comm. Math. Phys., 325 (2014), 367–419, arXiv: 1108.4389 | DOI | MR
[34] Dimofte T., Gukov S., Hollands L., “Vortex counting and Lagrangian 3-manifolds”, Lett. Math. Phys., 98 (2011), 225–287, arXiv: 1006.0977 | DOI | MR
[35] Dingle R.B., Morgan G.J., “${\rm WKB}$ methods for difference equations. I”, Appl. Sci. Res., 18 (1968), 221–237 | DOI | MR
[36] Dingle R.B., Morgan G.J., “${\rm WKB}$ methods for difference equations. II”, Appl. Sci. Res., 18 (1968), 238–245 | DOI | MR
[37] Eager R., Selmani S.A., Walcher J., “Exponential networks and representations of quivers”, J. High Energy Phys., 2017:8 (2017), 063, 68 pp., arXiv: 1611.06177 | DOI | MR
[38] Elliott C., Pestun V., “Multiplicative Hitchin systems and supersymmetric gauge theory”, Selecta Math. (N.S.), 25 (2019), 64, 82 pp., arXiv: 1812.05516 | DOI | MR
[39] Eynard B., Garcia-Failde E., Marchal O., Orantin N., Quantization of classical spectral curves via topological recursion, arXiv: 2106.04339
[40] Faber C., Pandharipande R., “Hodge integrals and Gromov–Witten theory”, Invent. Math., 139 (2000), 173–199, arXiv: math.AG/9810173 | DOI | MR
[41] Forbes B., Jinzenji M., “Extending the Picard–Fuchs system of local mirror symmetry”, J. Math. Phys., 46 (2005), 082302, 39 pp., arXiv: hep-th/0503098 | DOI | MR
[42] Gaiotto D., Kim H.-C., “Surface defects and instanton partition functions”, J. High Energy Phys., 2016:10 (2016), 012, 49 pp., arXiv: 1412.2781 | DOI | MR
[43] Gaiotto D., Moore G.W., Neitzke A., “Wall-crossing, Hitchin systems, and the WKB approximation”, Adv. Math., 234 (2013), 239–403, arXiv: 0907.3987 | DOI | MR
[44] Garoufalidis S., Gu J., Mariño M., “The resurgent structure of quantum knot invariants”, Comm. Math. Phys., 386 (2021), 469–493, arXiv: 2007.10190 | DOI | MR
[45] Garoufalidis S., Gu J., Mariño M., Peacock patterns and resurgence in complex Chern–Simons theory, arXiv: 2012.00062
[46] Garoufalidis S., Kashaev R., “Evaluation of state integrals at rational points”, Commun. Number Theory Phys., 9 (2015), 549–582, arXiv: 1411.6062 | DOI | MR
[47] Garoufalidis S., Kashaev R., “Resurgence of Faddeev's quantum dilogarithm”, Topology and Geometry – a Collection of Essays Dedicated to Vladimir G Turaev, IRMA Lect. Math. Theor. Phys., 33, Eur. Math. Soc., Zürich, 2021, 257–271, arXiv: 2008.12465 | DOI | MR
[48] Gel'fand I.M., Zelevinskii A.V., Kapranov M.M., “Hypergeometric functions and toric varieties”, Funct. Anal. Appl., 23 (1989), 94–106 | DOI | MR
[49] Gopakumar R., Vafa C., M-theory and topological strings. I, arXiv: hep-th/9809187
[50] Gopakumar R., Vafa C., M-theory and topological strings. II, arXiv: hep-th/9812127
[51] Gopakumar R., Vafa C., “On the gauge theory/geometry correspondence”, Adv. Theor. Math. Phys., 3 (1999), 1415–1443, arXiv: hep-th/9811131 | DOI | MR
[52] Grassi A., Hao Q., Neitzke A., Exponential NETWOrks, WKB and the topological string, arXiv: 2201.11594
[53] Grassi A., Hatsuda Y., Mariño M., “Topological strings from quantum mechanics”, Ann. Henri Poincaré, 17 (2016), 3177–3235, arXiv: 1410.3382 | DOI | MR
[54] Grassi A., Mariño M., Zakany S., “Resumming the string perturbation series”, J. High Energy Phys., 2015:5 (2015), 038, 35 pp., arXiv: 1405.4214 | DOI | MR
[55] Gu J., Mariño M., “Peacock patterns and new integer invariants in topological string theory”, SciPost Phys., 12 (2022), 058, 51 pp., arXiv: 2104.07437 | DOI | MR
[56] Hatsuda Y., Comments on exact quantization conditions and non-perturbative topological strings, arXiv: 1507.04799
[57] Hatsuda Y., “Spectral zeta function and non-perturbative effects in ABJM Fermi-gas”, J. High Energy Phys., 2015:11 (2015), 086, 33 pp., arXiv: 1503.07883 | DOI | MR
[58] Hatsuda Y., Mariño M., Moriyama S., Okuyama K., “Non-perturbative effects and the refined topological string”, J. High Energy Phys., 2014:9 (2014), 168, 42 pp., arXiv: 1306.1734 | DOI | MR
[59] Hatsuda Y., Okuyama K., “Resummations and non-perturbative corrections”, J. High Energy Phys., 2015:9 (2015), 051, 29 pp., arXiv: 1505.07460 | DOI | MR
[60] Hollands L., Kidwai O., “Higher length-twist coordinates, generalized Heun's opers, and twisted superpotentials”, Adv. Theor. Math. Phys., 22 (2018), 1713–1822, arXiv: 1710.04438 | DOI | MR
[61] Hollands L., Neitzke A., “Spectral networks and Fenchel–Nielsen coordinates”, Lett. Math. Phys., 106 (2016), 811–877, arXiv: 1312.2979 | DOI | MR
[62] Hollands L., Neitzke A., “Exact WKB and abelianization for the $T_3$ equation”, Comm. Math. Phys., 380 (2020), 131–186, arXiv: 1906.04271 | DOI | MR
[63] Hollands L., Rüter P., Szabo R.J., “A geometric recipe for twisted superpotentials”, J. High Energy Phys., 2021:12 (2021), 164, 90 pp., arXiv: 2109.14699 | DOI | MR
[64] Hori K., Vafa C., Mirror symmetry, arXiv: hep-th/0002222
[65] Hosono S., “Central charges, symplectic forms, and hypergeometric series in local mirror symmetry”, Mirror Symmetry. V, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, 2006, 405–439, arXiv: hep-th/0404043 | DOI | MR
[66] Huang M.-X., Klemm A., “Direct integration for general $\Omega$ backgrounds”, Adv. Theor. Math. Phys., 16 (2012), 805–849, arXiv: 1009.1126 | DOI | MR
[67] Iqbal A., Kozçaz C., Vafa C., “The refined topological vertex”, J. High Energy Phys., 2009:10 (2009), 069, 58 pp., arXiv: hep-th/0701156 | DOI | MR
[68] Iwaki K., Koike T., Takei Y., “Voros coefficients for the hypergeometric differential equations and Eynard–Orantin's topological recursion: Part II: For confluent family of hypergeometric equations”, J. Integrable Syst., 4 (2019), xyz004, 46 pp., arXiv: 1810.02946 | DOI | MR
[69] Iwaki K., Nakanishi T., “Exact WKB analysis and cluster algebras”, J. Phys. A, 47 (2014), 474009, 98 pp., arXiv: 1401.7094 | DOI | MR
[70] Jockers H., Mayr P., “Quantum K-theory of Calabi–Yau manifolds”, J. High Energy Phys., 2019:11 (2019), 011, 20 pp., arXiv: 1905.03548 | DOI | MR
[71] Jockers H., Mayr P., “A 3d gauge theory/quantum K-theory correspondence”, Adv. Theor. Math. Phys., 24 (2020), 327–457, arXiv: 1808.02040 | DOI | MR
[72] Kashani-Poor A.-K., “Quantization condition from exact WKB for difference equations”, J. High Energy Phys., 2016:6 (2016), 180, 34 pp., arXiv: 1604.01690 | DOI | MR
[73] Katz S., Klemm A., Vafa C., “Geometric engineering of quantum field theories”, Nuclear Phys. B, 497 (1997), 173–195, arXiv: hep-th/9609239 | DOI | MR
[74] Katz S., Mayr P., Vafa C., “Mirror symmetry and exact solution of $4$D $N=2$ gauge theories. I”, Adv. Theor. Math. Phys., 1 (1997), 53–114, arXiv: hep-th/9706110 | DOI | MR
[75] Krefl D., Mkrtchyan R.L., “Exact Chern–Simons/topological string duality”, J. High Energy Phys., 2015:10 (2015), 045, 27 pp., arXiv: 1506.03907 | DOI | MR
[76] Lerche W., “Introduction to Seiberg–Witten theory and its stringy origin”, Nuclear Phys. B Proc. Suppl., 55 (1997), 83–117, arXiv: hep-th/9611190 | DOI | MR
[77] Lockhart G., Vafa C., “Superconformal partition functions and non-perturbative topological strings”, J. High Energy Phys., 2018:10 (2018), 051, 43 pp., arXiv: 1210.5909 | DOI | MR
[78] Mariño M., “Lectures on non-perturbative effects in large $N$ gauge theories, matrix models and strings”, Fortschr. Phys., 62 (2014), 455–540, arXiv: 1206.6272 | DOI | MR
[79] Mariño M., “Spectral theory and mirror symmetry”, String-Math 2016, Proc. Sympos. Pure Math., 98, Amer. Math. Soc., Providence, RI, 2018, 259–294, arXiv: 1506.07757 | DOI | MR
[80] Mariño M., Moore G., “Counting higher genus curves in a Calabi–Yau manifold”, Nuclear Phys. B, 543 (1999), 592–614, arXiv: hep-th/9808131 | DOI | MR
[81] Mariño M., Zakany S., “Exact eigenfunctions and the open topological string”, J. Phys. A, 50 (2017), 325401, 50 pp., arXiv: 1606.05297 | DOI | MR
[82] Mironov A., Morosov A., “Nekrasov functions and exact Bohr–Sommerfeld integrals”, J. High Energy Phys., 2010:4 (2010), 040, 15 pp., arXiv: 0910.5670 | DOI | MR
[83] Narukawa A., “The modular properties and the integral representations of the multiple elliptic gamma functions”, Adv. Math., 189 (2004), 247–267, arXiv: math.QA/0306164 | DOI | MR
[84] Neitzke A., On a hyperholomorphic line bundle over the Coulomb branch, arXiv: 1110.1619
[85] Nekrasov N.A., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2003), 831–864, arXiv: hep-th/0206161 | DOI | MR
[86] Nekrasov N.A., Okounkov A., “Seiberg–Witten theory and random partitions”, The Unity of Mathematics, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, 525–596, arXiv: hep-th/0306238 | DOI | MR
[87] Nekrasov N.A, Rosly A., Shatashvili S.L., “Darboux coordinates, Yang–Yang functional, and gauge theory”, Nuclear Phys. B Proc. Suppl., 216 (2011), 69–93, arXiv: 1103.3919 | DOI | MR
[88] Nekrasov N.A., Shatashvili S.L., “Quantization of integrable systems and four dimensional gauge theories”, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 265–289, arXiv: 0908.4052 | DOI | MR
[89] Ooguri H., Vafa C., “Knot invariants and topological strings”, Nuclear Phys. B, 577 (2000), 419–438, arXiv: hep-th/9912123 | DOI | MR
[90] Pandharipande R., “The Toda equations and the Gromov–Witten theory of the Riemann sphere”, Lett. Math. Phys., 53 (2000), 59–74, arXiv: math.AG/9912166 | DOI | MR
[91] Pasquetti S., Schiappa R., “Borel and Stokes nonperturbative phenomena in topological string theory and $c=1$ matrix models”, Ann. Henri Poincaré, 11 (2010), 351–431, arXiv: 0907.4082 | DOI | MR
[92] Ruijsenaars S.N.M., “On Barnes' multiple zeta and gamma functions”, Adv. Math., 156 (2000), 107–132 | DOI | MR
[93] Seiberg N., Witten E., “Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nuclear Phys. B, 426 (1994), 19–52 | DOI | MR
[94] Takei Y., “WKB analysis and Stokes geometry of differential equations”, Analytic, Algebraic and Geometric Aspects of Differential Equations, Trends Math., Birkhäuser/Springer, Cham, 2017, 263–304 | DOI | MR
[95] Wang X., Zhang G., Huang M.-X., “New exact quantization condition for toric Calabi–Yau geometries”, Phys. Rev. Lett., 115 (2015), 121601, 5 pp., arXiv: 1505.05360 | DOI
[96] Witten E., Quantum background independence in string theory, arXiv: hep-th/9306122