About a Family of ALF Instantons with Conical Singularities
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We apply the techniques developed in our previous article to describe some interesting families of ALF gravitational instantons with conical singularities. In particular, we completely understand the 5-dimensional family of Chen–Teo metrics and prove that only 4-dimensional subfamilies can be smoothly compactified so that the metric has conical singularities.
Keywords: toric geometry, conformally Kähler metrics.
Mots-clés : gravitational instantons
@article{SIGMA_2023_19_a78,
     author = {Olivier Biquard and Paul Gauduchon},
     title = {About a {Family} of {ALF} {Instantons} with {Conical} {Singularities}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a78/}
}
TY  - JOUR
AU  - Olivier Biquard
AU  - Paul Gauduchon
TI  - About a Family of ALF Instantons with Conical Singularities
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a78/
LA  - en
ID  - SIGMA_2023_19_a78
ER  - 
%0 Journal Article
%A Olivier Biquard
%A Paul Gauduchon
%T About a Family of ALF Instantons with Conical Singularities
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a78/
%G en
%F SIGMA_2023_19_a78
Olivier Biquard; Paul Gauduchon. About a Family of ALF Instantons with Conical Singularities. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a78/

[1] Aksteiner S., Andersson L., Gravitational instantons and special geometry, arXiv: 2112.11863

[2] Apostolov V., Calderbank D.M.J., Gauduchon P., “Ambitoric geometry I: Einstein metrics and extremal ambikähler structures”, J. Reine Angew. Math., 721 (2016), 109–147, arXiv: 1302.6975 | DOI | MR | Zbl

[3] Biquard O., Gauduchon P., “On toric Hermitian ALF gravitational instantons”, Comm. Math. Phys., 399 (2023), 389–422, arXiv: 2112.12711 | DOI | MR | Zbl

[4] Calabi E., “Métriques kählériennes et fibrés holomorphes”, Ann. Sci. École Norm. Sup., 12 (1979), 269–294 | DOI | MR

[5] Chen Y., Teo E., “Rod-structure classification of gravitational instantons with $U(1)\times U(1)$ isometry”, Nuclear Phys. B, 838 (2010), 207–237, arXiv: 1004.2750 | DOI | MR | Zbl

[6] Chen Y., Teo E., “A new AF gravitational instanton”, Phys. Lett. B, 703 (2011), 359–362, arXiv: 1107.0763 | DOI | MR

[7] Chen Y., Teo E., “Five-parameter class of solutions to the vacuum Einstein equations”, Phys. Rev. D, 91 (2015), 124005, 17 pp., arXiv: 1504.01235 | DOI | MR

[8] Derdziński A., “Self-dual Kähler manifolds and Einstein manifolds of dimension four”, Compos. Math., 49 (1983), 405–433 | MR | Zbl

[9] Dixon K., “Regular ambitoric 4-manifolds: from Riemannian Kerr to a complete classification”, Comm. Anal. Geom., 29 (2021), 629–679, arXiv: 1604.03156 | DOI | MR | Zbl

[10] Eguchi T., Hanson A.J., “Asymptotically flat self-dual solutions to Euclidean gravity”, Phys. Lett. B, 74 (1978), 249–251 | DOI | MR

[11] Gibbons G.W., Hawking S., “Gravitational multi-instantons”, Phys. Lett. B, 78 (1978), 430–432 | DOI | MR

[12] Gibbons G.W., Perry M.J., “New gravitational instantons and their interactions”, Phys. Rev. D, 22 (1980), 313–321 | DOI | MR

[13] Harmark T., “Stationary and axisymmetric solutions of higher-dimensional general relativity”, Phys. Rev. D, 70 (2004), 124002, 25 pp., arXiv: hep-th/0408141 | DOI | MR

[14] Hatcher A., Course notes: Basic 3-manifold topology, https://pi.math.cornell.edu/h̃atcher/ | MR

[15] Page D., “Taub-NUT instantons with an horizon”, Phys. Lett. B, 78 (1978), 249–251 | DOI

[16] Saveliev N., Lectures on the topology of 3-manifolds. An introduction to the Casson invariant, De Gruyter Textb., De Gruyter, Berlin, 2012 | DOI | MR | Zbl

[17] Tod P., One-sided type D Ricci-flat metrics, arXiv: 2003.03234