Information Geometry, Jordan Algebras, and a Coadjoint Orbit-Like Construction
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Jordan algebras arise naturally in (quantum) information geometry, and we want to understand their role and their structure within that framework. Inspired by Kirillov's discussion of the symplectic structure on coadjoint orbits, we provide a similar construction in the case of real Jordan algebras. Given a real, finite-dimensional, formally real Jordan algebra $\mathcal{J}$, we exploit the generalized distribution determined by the Jordan product on the dual $\mathcal{J}^{\star}$ to induce a pseudo-Riemannian metric tensor on the leaves of the distribution. In particular, these leaves are the orbits of a Lie group, which is the structure group of $\mathcal{J}$, in clear analogy with what happens for coadjoint orbits. However, this time in contrast with the Lie-algebraic case, we prove that not all points in $\mathcal{J}^{*}$ lie on a leaf of the canonical Jordan distribution. When the leaves are contained in the cone of positive linear functionals on $\mathcal{J}$, the pseudo-Riemannian structure becomes Riemannian and, for appropriate choices of $\mathcal{J}$, it coincides with the Fisher–Rao metric on non-normalized probability distributions on a finite sample space, or with the Bures–Helstrom metric for non-normalized, faithful quantum states of a finite-level quantum system, thus showing a direct link between the mathematics of Jordan algebras and both classical and quantum information geometry.
Keywords: information geometry, Kirillov orbit method, Fisher–Rao metric, Bures–Helstrom metric.
Mots-clés : Jordan algebras, Lie algebras
@article{SIGMA_2023_19_a77,
     author = {Florio M. Ciaglia and J\"urgen Jost and Lorenz J. Schwachh\"ofer},
     title = {Information {Geometry,} {Jordan} {Algebras,} and a {Coadjoint} {Orbit-Like} {Construction}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a77/}
}
TY  - JOUR
AU  - Florio M. Ciaglia
AU  - Jürgen Jost
AU  - Lorenz J. Schwachhöfer
TI  - Information Geometry, Jordan Algebras, and a Coadjoint Orbit-Like Construction
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a77/
LA  - en
ID  - SIGMA_2023_19_a77
ER  - 
%0 Journal Article
%A Florio M. Ciaglia
%A Jürgen Jost
%A Lorenz J. Schwachhöfer
%T Information Geometry, Jordan Algebras, and a Coadjoint Orbit-Like Construction
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a77/
%G en
%F SIGMA_2023_19_a77
Florio M. Ciaglia; Jürgen Jost; Lorenz J. Schwachhöfer. Information Geometry, Jordan Algebras, and a Coadjoint Orbit-Like Construction. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a77/

[1] Alfsen E.M., Shultz F.W., “State spaces of operator algebras. Basic theory, orientations, and $C^*$-products”, Math. Theory Appl., Birkhäuser, Boston, MA, 2001 | DOI | MR | Zbl

[2] Amari S.-I., Differential-geometrical methods in statistics, Lect. Notes Stat., 28, Springer, Berlin, 1985 | DOI | MR | Zbl

[3] Amari S.-I., Information geometry and its applications, Appl. Math. Sci., 194, Springer, Tokyo, 2016 | DOI | MR | Zbl

[4] Amari S.-I., Nagaoka H., Methods of information geometry, Transl. Math. Monogr., 191, American Mathematical Society, Providence, RI, 2000 | DOI | MR | Zbl

[5] Ay N., Jost J., Lê H.V., Schwachhöfer L., “Information geometry and sufficient statistics”, Probab. Theory Related Fields, 162 (2015), 327–364, arXiv: 1207.6736 | DOI | MR | Zbl

[6] Ay N., Jost J., Lê H.V., Schwachhöfer L., “Information geometry”, Ergeb. Math. Grenzgeb. (3), 64, Springer, Cham, 2017 | DOI | MR | Zbl

[7] Baez J.C., “Getting to the bottom of Noether's theorem”, The Philosophy and Physics of Noether's Theorems: a Centenary Volume, Cambridge University Press, Cambridge, 2022, 66–99, arXiv: 2006.14741 | DOI

[8] Bauer M., Bruveris M., Michor P.W., “Uniqueness of the Fisher–Rao metric on the space of smooth densities”, Bull. Lond. Math. Soc., 48 (2016), 499–506, arXiv: 1411.5577 | DOI | MR | Zbl

[9] Bengtsson I., Zyczkowski K., Geometry of quantum states: an introduction to quantum entanglement, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl

[10] Berthier M., “Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit”, J. Math. Neurosci., 10 (2020), 14, 25 pp., arXiv: hal-02342456 | DOI | MR | Zbl

[11] Berthier M., Prencipe N., Provenzi E., “A quantum information-based refoundation of color perception concepts”, SIAM J. Imaging Sci., 15 (2022), 1944–1976 | DOI | MR | Zbl

[12] Berthier M., Provenzi E., “Quantum measurement and colour perception: theory and applications”, Proc. A., 478 (2022), 20210508, 25 pp., arXiv: hal-03268152 | DOI | MR

[13] Bertram W., The geometry of Jordan and Lie structures, Lecture Notes in Math., 1754, Springer, Berlin, 2000 | DOI | MR | Zbl

[14] Bertram W., Neeb K.-H., “Projective completions of Jordan pairs, Part II: Manifold structures and symmetric spaces”, Geom. Dedicata, 112 (2005), 73–113, arXiv: math.GR/0401236 | DOI | MR | Zbl

[15] Bures D., “An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite $w^{\ast}$-algebras”, Trans. Amer. Math. Soc., 135 (1969), 199–212 | DOI | MR | Zbl

[16] Čencov N.N., Statistical decision rules and optimal inference, Transl. Math. Monogr., 53, American Mathematical Society, Providence, RI, 1982 | DOI | MR

[17] Chruściński D., Ciaglia F.M., Ibort A., Marmo G., Ventriglia F., “Stratified manifold of quantum states, actions of the complex special linear group”, Ann. Physics, 400 (2019), 221–245, arXiv: 1811.07406 | DOI | MR | Zbl

[18] Chu C.-H., Jordan structures in geometry and analysis, Cambridge Tracts in Math., 190, Cambridge University Press, Cambridge, 2012 | DOI | MR | Zbl

[19] Chu C.-H., “Infinite dimensional Jordan algebras and symmetric cones”, J. Algebra, 491 (2017), 357–371, arXiv: 1707.03610 | DOI | MR | Zbl

[20] Ciaglia F.M., Cosmo F.D., Ibort A., Laudato M., Marmo G., “Dynamical vector fields on the manifold of quantum states”, Open Syst. Inf. Dyn., 24 (2017), 1740003, 38 pp., arXiv: 1707.00293 | DOI | MR | Zbl

[21] Ciaglia F.M., Di Cosmo F., Laudato M., Marmo G., Mele F.M., Ventriglia F., Vitale P., “A pedagogical intrinsic approach to relative entropies as potential functions of quantum metrics: the $q$-$z$ family”, Ann. Physics, 395 (2018), 238–274, arXiv: 1711.09769 | DOI | MR | Zbl

[22] Ciaglia F.M., Jost J., Schwachhöfer L., “Differential geometric aspects of parametric estimation theory for states on finite-dimensional $C^*$-algebras”, Entropy, 22 (2020), 1332, 30 pp., arXiv: 2010.14394 | DOI | MR

[23] Ciaglia F.M., Jost J., Schwachhöfer L., “From the Jordan product to Riemannian geometries on classical and quantum states”, Entropy, 22 (2020), 637, 27 pp., arXiv: 2005.02023 | DOI | MR

[24] Ciaglia F.M., Nocera F.D., Jost J., Schwachhöfer L., “Parametric models and information geometry on $W^{*}$-algebras”, Inf. Geom., 5 (2023), 1–26, arXiv: 2207.09396 | DOI | MR

[25] Dittmann J., “On the Riemannian geometry of finite-dimensional mixed states”, Sem. Sophus Lie, 3 (1993), 73–87 | MR | Zbl

[26] Dittmann J., “On the Riemannian metric on the space of density matrices”, Rep. Math. Phys., 36 (1995), 309–315 | DOI | MR | Zbl

[27] Facchi P., Ferro L., Marmo G., Pascazio S., “Defining quantumness via the Jordan product”, J. Phys. A, 47 (2014), 035301, 9 pp., arXiv: 1309.4635 | DOI | MR | Zbl

[28] Facchi P., Kulkarni R., Man'ko V.I., Marmo G., Sudarshan E.C.G., Ventriglia F., “Classical and quantum Fisher information in the geometrical formulation of quantum mechanics”, Phys. Lett. A, 374 (2010), 4801–4803, arXiv: 1009.5219 | DOI | MR | Zbl

[29] Falceto F., Ferro L., Ibort A., Marmo G., “Reduction of Lie–Jordan Banach algebras and quantum states”, J. Phys. A, 46 (2013), 015201, 14 pp., arXiv: 1202.3969 | DOI | MR | Zbl

[30] Faraut J., Korányi A., Analysis on symmetric cones, Oxford Math. Monogr., The Clarendon Press, Oxford, 1994 | MR

[31] Fisher R.A., “On the mathematical foundations of theoretical statistics”, Philos. Trans. Roy. Soc. A, 222 (1922), 309–368 | DOI | MR

[32] Fuchs C.A., Distinguishability and accessible information in quantum theory, Ph.D. Thesis, Universite de Montreal, 1996, arXiv: quant-ph/9601020

[33] Fujiwara A., “Hommage to Chentsov's theorem”, Inf. Geom. (to appear) | DOI

[34] Hasegawa H., “Non-commutative extension of the information geometry”, Quantum Communications and Measurement (Nottingham, 1994), Plenum, New York, 1995, 327–337 | DOI | MR | Zbl

[35] Hasegawa H., Petz D., “Non-commutative extension of information geometry II”, Quantum Communication, Computing, and Measurement, Springer, New York, 1997, 109–118 | DOI | MR

[36] Helstrom C.W., “Minimum mean-squared error of estimates in quantum statistics”, Phys. Lett. A, 25 (1967), 101–102 | DOI

[37] Helstrom C.W., “The minimum variance of estimates in quantum signal detection”, IEEE Trans. Inform. Theory, 14 (1968), 234–242 | DOI | MR | Zbl

[38] Helstrom C.W., “Quantum detection and estimation theory”, J. Stat. Phys., 1 (1969), 231–252 | DOI | MR

[39] Helstrom C.W., Quantum detection and estimation theory, Academic Press, New York, 1976 | MR | Zbl

[40] Hilgert J., Neeb K.-H., Ørsted B., “The geometry of nilpotent coadjoint orbits of convex type in Hermitian Lie algebras”, J. Lie Theory, 4 (1994), 185–235 | MR | Zbl

[41] Hilgert J., Neeb K.-H., Ørsted B., “Conal Heisenberg algebras and associated Hilbert spaces”, J. Reine Angew. Math., 474 (1996), 67–112 | DOI | MR | Zbl

[42] Hilgert J., Neeb K.-H., Ørsted B., “Unitary highest weight representations via the orbit method. I The scalar case”, Acta Appl. Math., 44 (1996), 151–184 | DOI | MR | Zbl

[43] Iordănescu R., Jordan structures in geometry and physics, Editura Academiei Române, Bucharest, 2003, arXiv: 1106.4415 | MR | Zbl

[44] Jenčová A., Affine connections, duality and divergences for a von Neumann algebra, arXiv: math-ph/0311004

[45] Jenčová A., “A construction of a nonparametric quantum information manifold”, J. Funct. Anal., 239 (2006), 1–20, arXiv: math-ph/0511065 | DOI | MR | Zbl

[46] Jordan P., von Neumann J., Wigner E.P., “On an algebraic generalization of the quantum mechanical formalism”, Ann. of Math., 35 (1934), 29–64 | DOI | MR | Zbl

[47] Kakutani S., “On equivalence of infinite product measures”, Ann. of Math., 49 (1948), 214–224 | DOI | MR | Zbl

[48] Kirillov A.A., “Unitary representations of nilpotent Lie groups”, Russian Math. Surveys, 17 (1962), 53–104 | DOI | MR | Zbl

[49] Kirillov A.A., Elements of the theory of representations, Grundlehren Math. Wiss., 220, Springer, Berlin, 1976 | DOI | MR | Zbl

[50] Kirillov A.A., “Geometric quantization”, Dynamical Systems, IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 2001, 139–176, arXiv: 1801.02307 | DOI | MR

[51] Kirillov A.A., Lectures on the orbit method, Grad. Stud. Math., 64, American Mathematical Society, Providence, RI, 2004 | DOI | MR | Zbl

[52] Koecher M., The Minnesota notes on Jordan algebras and their applications, Lecture Notes in Math., 1710, Springer, Berlin, 1999 | DOI | MR | Zbl

[53] Kostant B., “Quantization and unitary representations. I Prequantization”, Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., 170, Springer, Berlin, 1970, 87–208 | DOI | MR

[54] Kostecki R.P., “Quantum theory as inductive inference”, J. Math. Phys., 1305 (2011), 33–40, arXiv: 1009.2423 | DOI | MR

[55] Larotonda G., Luna J., “On the structure group of an infinite dimensional JB-algebra”, J. Algebra, 622 (2023), 366–403, arXiv: 2206.05320 | DOI | MR

[56] Lesniewski A., Ruskai M.B., “Monotone Riemannian metrics and relative entropy on noncommutative probability spaces”, J. Math. Phys., 40 (1999), 5702–5724, arXiv: math-ph/9808016 | DOI | MR | Zbl

[57] Lichnerowicz A., “Les variétés de Poisson et leurs algèbres de Lie associées”, J. Differential Geometry, 12 (1977), 253–300 | DOI | MR | Zbl

[58] Liu J., Yuan H., Lu X.-M., Wang X., “Quantum Fisher information matrix and multiparameter estimation”, J. Phys. A, 53 (2020), 023001, 68 pp., arXiv: 1907.08037 | DOI | MR | Zbl

[59] Mahalanobis P.C., “On the generalized distance in statistics”, Proc. Natl. Inst. Sci. India, 2 (1936), 49–55 | MR | Zbl

[60] Man'ko V.I., Marmo G., Ventriglia F., Vitale P., “Metric on the space of quantum states from relative entropy. Tomographic reconstruction”, J. Phys. A, 50 (2017), 335302, 29 pp., arXiv: 1612.07986 | DOI | MR | Zbl

[61] Morozowa E.A., Cencov N.N., “Markov invariant geometry on state manifolds”, J. Sov. Math., 56 (1991), 2648–2669 | DOI

[62] Niestegge G., “A simple and quantum-mechanically motivated characterization of the formally real Jordan algebras”, Proc. A., 476 (2020), 20190604, 14 pp., arXiv: 2019.0604 | DOI | MR | Zbl

[63] Paris M.G.A., “Quantum estimation for quantum technology”, Int. J. Quantum Inf., 7 (2009), 125–137, arXiv: 0804.2981 | DOI | Zbl

[64] Petz D., “Monotone metrics on matrix spaces”, Linear Algebra Appl., 244 (1996), 81–96 | DOI | MR | Zbl

[65] Provenzi E., “Geometry of color perception. Part 1: structures and metrics of a homogeneous color space”, J. Math. Neurosci., 10 (2020), 7, 19 pp. | DOI | MR | Zbl

[66] Rao C.R., “Information and accuracy attainable in the estimation of statistical parameters”, Bulletin of the Calcutta Mathematical Society, Springer Ser. Statist., 37, Springer, Berlin, 1992, 235–247 | DOI | MR

[67] Resnikoff H.L., “Differential geometry and color perception”, J. Math. Biol., 1 (1974), 97–131 | DOI | MR | Zbl

[68] Šafránek D., “Discontinuities of the quantum Fisher information and the Bures metric”, Phys. Rev. A, 95 (2017), 052320, 13 pp., arXiv: 1612.04581 | DOI

[69] Šafránek D., “Simple expression for the quantum Fisher information matrix”, Phys. Rev. A, 97 (2018), 042322, 6 pp., arXiv: 1801.00945 | DOI

[70] Seveso L., Albarelli F., Genoni M.G., Paris M.G.A., “On the discontinuity of the quantum Fisher information for quantum statistical models with parameter dependent rank”, J. Phys. A, 53 (2020), 02LT01, 13 pp., arXiv: 1906.06185 | DOI | MR | Zbl

[71] Souriau J.-M., Structure des systèmes dynamiques, Dunod, Paris, 1970 | MR | Zbl

[72] Sussmann H.J., “Orbits of families of vector fields and integrability of distributions”, Trans. Amer. Math. Soc., 180 (1973), 171–188 | DOI | MR | Zbl

[73] Suzuki J., Yang Y., Hayashi M., “Quantum state estimation with nuisance parameters”, J. Phys. A, 53 (2020), 453001, 61 pp., arXiv: 1911.02790 | DOI | MR | Zbl

[74] Tóth G., Apellaniz I., “Quantum metrology from a quantum information science perspective”, J. Phys. A, 47 (2014), 424006, 39 pp., arXiv: 1405.4878 | DOI | MR | Zbl

[75] Tulczyjew W.M., “Poisson brackets and canonical manifolds”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22 (1974), 931–935) | MR

[76] Uhlmann A., “The “transition probability” in the state space of a $^*$-algebra”, Rep. Math. Phys., 9 (1976), 273–279 | DOI | MR | Zbl

[77] Uhlmann A., “The metric of bures and the geometric phase”, Groups and Related Topics, Math. Phys. Stud., 13, Springer, Dordrecht, 1992, 267–274 | DOI | MR

[78] Upmeier H., Symmetric Banach manifolds and Jordan $C^\ast$-algebras, North-Holland Math. Stud., 104, North-Holland Publishing Co., Amsterdam, 1985 | MR | Zbl

[79] Westerbaan B., van de Wetering J., “A computer scientist's reconstruction of quantum theory”, J. Phys. A, 55 (2022), 384002, 52 pp., arXiv: 2109.10707 | DOI | MR | Zbl

[80] Wootters W.K., “Statistical distance and Hilbert space”, Phys. Rev. D, 23 (1981), 357–362 | DOI | MR