Sun's Series via Cyclotomic Multiple Zeta Values
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove and generalize several recent conjectures of Z.-W. Sun surrounding binomial coefficients and harmonic numbers. We show that Sun's series and their analogs can be represented as cyclotomic multiple zeta values of levels $N\in\{4,8,12,16,24\} $, namely Goncharov's multiple polylogarithms evaluated at $N $-th roots of unity.
Keywords: Sun's series, harmonic numbers, cyclotomic multiple zeta values.
Mots-clés : binomial coefficients
@article{SIGMA_2023_19_a73,
     author = {Yajun Zhou},
     title = {Sun's {Series} via {Cyclotomic} {Multiple} {Zeta} {Values}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a73/}
}
TY  - JOUR
AU  - Yajun Zhou
TI  - Sun's Series via Cyclotomic Multiple Zeta Values
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a73/
LA  - en
ID  - SIGMA_2023_19_a73
ER  - 
%0 Journal Article
%A Yajun Zhou
%T Sun's Series via Cyclotomic Multiple Zeta Values
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a73/
%G en
%F SIGMA_2023_19_a73
Yajun Zhou. Sun's Series via Cyclotomic Multiple Zeta Values. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a73/

[1] Ablinger J., “Discovering and proving infinite binomial sums identities”, Exp. Math., 26 (2017), 62–71, arXiv: 1507.01703 | DOI | MR | Zbl

[2] Ablinger J., “Discovering and proving infinite Pochhammer sum identities”, Exp. Math., 31 (2022), 309–323, arXiv: 1902.11001 | DOI | MR | Zbl

[3] Ablinger J., Blümlein J., Raab C.G., Schneider C., “Iterated binomial sums and their associated iterated integrals”, J. Math. Phys., 55 (2014), 112301, 57 pp., arXiv: 1407.1822 | DOI | MR | Zbl

[4] Ablinger J., Blümlein J., Schneider C., “Harmonic sums and polylogarithms generated by cyclotomic polynomials”, J. Math. Phys., 52 (2011), 102301, 52 pp., arXiv: 1105.6063 | DOI | MR | Zbl

[5] Ablinger J., Blümlein J., Schneider C., “Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms”, J. Math. Phys., 54 (2013), 082301, 74 pp., arXiv: 1302.0378 | DOI | MR | Zbl

[6] Au K.C., Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series, arXiv: 2007.03957

[7] Au K.C., Iterated integrals and multiple polylogarithm at algebraic arguments, arXiv: 2201.01676

[8] Charlton S., Gangl H., Lai L., Xu C., Zhao J., On two conjectures of Sun concerning Apéry-like series, Forum Math. (to appear) , arXiv: 2210.14704 | DOI

[9] Davydychev A.I., Kalmykov M.Yu., “New results for the $\varepsilon$-expansion of certain one-, two- and three-loop Feynman diagrams”, Nuclear Phys. B, 605 (2001), 266–318, arXiv: hep-th/0012189 | DOI | MR | Zbl

[10] Davydychev A.I., Kalmykov M.Yu., “Massive Feynman diagrams and inverse binomial sums”, Nuclear Phys. B, 699 (2004), 3–64, arXiv: hep-th/0303162 | DOI | MR | Zbl

[11] Frellesvig H., Tommasini D., Wever C., “On the reduction of generalized polylogarithms to $\mathrm{Li}_ n$ and $\mathrm{Li}_{2, 2}$ and on the evaluation thereof”, J. High Energy Phys., 2016:3 (2016), 189, 35 pp., arXiv: 1601.02649v3 | DOI | MR | Zbl

[12] Goncharov A.B., “The double logarithm and Manin's complex for modular curves”, Math. Res. Lett., 4 (1997), 617–636 | DOI | MR | Zbl

[13] Goncharov A.B., “Multiple polylogarithms, cyclotomy and modular complexes”, Math. Res. Lett., 5 (1998), 497–516, arXiv: 1105.2076 | DOI | MR | Zbl

[14] Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, Elsevier, Amsterdam, 2007 | MR | Zbl

[15] Kalmykov M.Yu., Veretin O., “Single-scale diagrams and multiple binomial sums”, Phys. Lett. B, 483 (2000), 315–323, arXiv: hep-th/0004010 | DOI | MR | Zbl

[16] Kalmykov M.Yu., Ward B.F.L., Yost S.A., “Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order $\varepsilon$-expansion of generalized hypergeometric functions”, J. High Energy Phys., 2007:10 (2007), 048, 26 pp., arXiv: 0707.3654 | DOI | MR

[17] Mező I., “Nonlinear Euler sums”, Pacific J. Math., 272 (2014), 201–226 | DOI | MR | Zbl

[18] Panzer E., “Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals”, Comput. Phys. Commun., 188 (2015), 148–166, arXiv: 1403.3385 | DOI | Zbl

[19] Sun Z.-W., “Series with summands involving harmonic numbers”, Combinatorial and Additive Number Theory (to appear) , arXiv: 2210.07238v8

[20] Weinzierl S., “Expansion around half-integer values, binomial sums, and inverse binomial sums”, J. Math. Phys., 45 (2004), 2656–2673, arXiv: hep-ph/0402131 | DOI | MR | Zbl

[21] Xu C., Zhao J., Sun's three conjectures on Apéry-like sums involving harmonic numbers, 2022, arXiv: 2203.04184

[22] Xu C., Zhao J., A note on Sun's conjectures on Apéry-like sums involving Lucas sequences and harmonic numbers, arXiv: 2204.08277

[23] Zhou Y., Hyper-Mahler measures via Goncharov–Deligne cyclotomy, arXiv: 2210.17243v3 | Zbl