Mots-clés : semi-classical quantization.
@article{SIGMA_2023_19_a72,
author = {James Martin Speight and Thomas Winyard},
title = {Nudged {Elastic} {Bands} and {Lightly} {Bound} {Skyrmions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a72/}
}
James Martin Speight; Thomas Winyard. Nudged Elastic Bands and Lightly Bound Skyrmions. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a72/
[1] Adam C., Sánchez-Guillén J., Wereszczyński A., “BPS Skyrme model and baryons at large $N_{c}$”, Phys. Rev. D, 82 (2010), 085015, 13 pp., arXiv: 1007.1567 | DOI
[2] Bessarab P.F., Uzdin V.M., Jónsson H., “Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation”, Comput. Phys. Commun., 196 (2015), 335–347, arXiv: 1502.05065 | DOI
[3] Fábri C., Császár A.G., “Vibrational quantum graphs and their application to the quantum dynamics of ${\rm CH}_5{}^+$”, Phys. Chem. Chem. Phys., 20 (2018), 16913–16917 | DOI
[4] Gillard M., Harland D., Kirk E., Maybee B., Speight M., “A point particle model of lightly bound skyrmions”, Nuclear Phys. B, 917 (2017), 286–316, arXiv: 1612.05481 | DOI | Zbl
[5] Gillard M., Harland D., Speight M., “Skyrmions with low binding energies”, Nuclear Phys. B, 895 (2015), 272–287, arXiv: 1501.05455 | DOI | MR | Zbl
[6] Gudnason S.B., Halcrow C., “A smörgåsbord of {S}kyrmions”, J. High Energy Phys., 2022:8 (2022), 117, 111 pp., arXiv: 2202.01792 | DOI | MR
[7] Halcrow C.J., “Vibrational quantisation of the $B=7$ skyrmion”, Nuclear Phys. B, 904 (2016), 106–123, arXiv: 1511.00682 | DOI | MR | Zbl
[8] Halcrow C.J., King C., Manton N.S., “A dynamical $\alpha$-cluster model of $^{16}{\rm O}$”, Phys. Rev. C, 95 (3), 031303, 5 pp., arXiv: 1608.05048 | DOI | MR
[9] Harland D., “Topological energy bounds for the Skyrme and Faddeev models with massive pions”, Phys. Lett. B, 728 (2014), 518–523, arXiv: 1311.2403 | DOI | Zbl
[10] Krusch S., “Homotopy of rational maps and the quantization of skyrmions”, Ann. Physics, 304 (2003), 103–127, arXiv: hep-th/0210310 | DOI | MR | Zbl
[11] Rawlinson J.I., “An alpha particle model for Carbon-12”, Nuclear Phys. A, 975 (2018), 122–135, arXiv: 1712.05658 | DOI
[12] Rawlinson J.I., “Coriolis terms in skyrmion quantization”, Nuclear Phys. B, 949 (2019), 114800, 17 pp., arXiv: 1908.03414 | DOI | MR | Zbl
[13] Skyrme T.H.R., “A unified field theory of mesons and baryons”, Nuclear Phys., 31 (1962), 556–569 | DOI | MR
[14] Sutcliffe P., “Skyrmions in a truncated BPS theory”, J. High Energy Phys., 2011:4 (2011), 045, 13 pp., arXiv: 1101.2402 | DOI | MR | Zbl
[15] Urbanik D., Quantum physics and the representation theory of ${\rm SU}(2)$, unpublished, 2016
[16] Witten E., “Current algebra, baryons, and quark confinement”, Nuclear Phys. B, 223 (1983), 433–444 | DOI | MR