Nudged Elastic Bands and Lightly Bound Skyrmions
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It has become clear in recent years that the configuration space of the nuclear Skyrme model has, in each topological class, many almost degenerate local energy minima and that the number of such minima grows with the degree (or baryon number) $B$. Rigid body quantization, in which one quantizes motion on the spin-isospin orbit of just one minimum, is thus an ill-justified approximation. Instead, one should identify a (finite-dimensional) moduli space of configurations containing all local minima (for a given $B$) as well as fields interpolating smoothly between them. This paper proposes a systematic computational scheme for generating such a moduli space: one constructs an energy minimizing path between each pair of local minima, then defines the moduli space to be the union of spin-isospin orbits of points on the union of these curves, a principal bundle over a graph. The energy minimizing curves may be constructed in practice using the nudged elastic band method, a standard tool in mathematical chemistry for analyzing reaction paths and computing activation energies. To illustrate, we apply this scheme to the lightly bound Skyrme model in the point particle approximation, constructing the graphs for $5\leq B\leq 10$. We go on to complete the quantization for $B=7$, in which the graph has two vertices and a single edge. The low-lying quantum states with isospin $1/2$ do not strongly localize around either of the local energy minima (the vertices). Their energies rise monotonically with spin, conflicting with experimental data for Lithium-7.
Keywords: nuclear Skyrme model, energy minimizing paths, saddle points
Mots-clés : semi-classical quantization.
@article{SIGMA_2023_19_a72,
     author = {James Martin Speight and Thomas Winyard},
     title = {Nudged {Elastic} {Bands} and {Lightly} {Bound} {Skyrmions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a72/}
}
TY  - JOUR
AU  - James Martin Speight
AU  - Thomas Winyard
TI  - Nudged Elastic Bands and Lightly Bound Skyrmions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a72/
LA  - en
ID  - SIGMA_2023_19_a72
ER  - 
%0 Journal Article
%A James Martin Speight
%A Thomas Winyard
%T Nudged Elastic Bands and Lightly Bound Skyrmions
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a72/
%G en
%F SIGMA_2023_19_a72
James Martin Speight; Thomas Winyard. Nudged Elastic Bands and Lightly Bound Skyrmions. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a72/

[1] Adam C., Sánchez-Guillén J., Wereszczyński A., “BPS Skyrme model and baryons at large $N_{c}$”, Phys. Rev. D, 82 (2010), 085015, 13 pp., arXiv: 1007.1567 | DOI

[2] Bessarab P.F., Uzdin V.M., Jónsson H., “Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation”, Comput. Phys. Commun., 196 (2015), 335–347, arXiv: 1502.05065 | DOI

[3] Fábri C., Császár A.G., “Vibrational quantum graphs and their application to the quantum dynamics of ${\rm CH}_5{}^+$”, Phys. Chem. Chem. Phys., 20 (2018), 16913–16917 | DOI

[4] Gillard M., Harland D., Kirk E., Maybee B., Speight M., “A point particle model of lightly bound skyrmions”, Nuclear Phys. B, 917 (2017), 286–316, arXiv: 1612.05481 | DOI | Zbl

[5] Gillard M., Harland D., Speight M., “Skyrmions with low binding energies”, Nuclear Phys. B, 895 (2015), 272–287, arXiv: 1501.05455 | DOI | MR | Zbl

[6] Gudnason S.B., Halcrow C., “A smörgåsbord of {S}kyrmions”, J. High Energy Phys., 2022:8 (2022), 117, 111 pp., arXiv: 2202.01792 | DOI | MR

[7] Halcrow C.J., “Vibrational quantisation of the $B=7$ skyrmion”, Nuclear Phys. B, 904 (2016), 106–123, arXiv: 1511.00682 | DOI | MR | Zbl

[8] Halcrow C.J., King C., Manton N.S., “A dynamical $\alpha$-cluster model of $^{16}{\rm O}$”, Phys. Rev. C, 95 (3), 031303, 5 pp., arXiv: 1608.05048 | DOI | MR

[9] Harland D., “Topological energy bounds for the Skyrme and Faddeev models with massive pions”, Phys. Lett. B, 728 (2014), 518–523, arXiv: 1311.2403 | DOI | Zbl

[10] Krusch S., “Homotopy of rational maps and the quantization of skyrmions”, Ann. Physics, 304 (2003), 103–127, arXiv: hep-th/0210310 | DOI | MR | Zbl

[11] Rawlinson J.I., “An alpha particle model for Carbon-12”, Nuclear Phys. A, 975 (2018), 122–135, arXiv: 1712.05658 | DOI

[12] Rawlinson J.I., “Coriolis terms in skyrmion quantization”, Nuclear Phys. B, 949 (2019), 114800, 17 pp., arXiv: 1908.03414 | DOI | MR | Zbl

[13] Skyrme T.H.R., “A unified field theory of mesons and baryons”, Nuclear Phys., 31 (1962), 556–569 | DOI | MR

[14] Sutcliffe P., “Skyrmions in a truncated BPS theory”, J. High Energy Phys., 2011:4 (2011), 045, 13 pp., arXiv: 1101.2402 | DOI | MR | Zbl

[15] Urbanik D., Quantum physics and the representation theory of ${\rm SU}(2)$, unpublished, 2016

[16] Witten E., “Current algebra, baryons, and quark confinement”, Nuclear Phys. B, 223 (1983), 433–444 | DOI | MR