Mots-clés : quasi-local algebras.
@article{SIGMA_2023_19_a71,
author = {Ryosuke Sato},
title = {Multiplicative {Characters} and {Gaussian} {Fluctuation} {Limits}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a71/}
}
Ryosuke Sato. Multiplicative Characters and Gaussian Fluctuation Limits. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a71/
[1] Accardi L., Bach A., “Central limits of squeezing operators”, Quantum Probability and Applications IV, Lecture Notes in Math., 1396, Springer, Berlin, 1989, 7–19 | DOI | MR
[2] Blackadar B., Operator algebras. Theory of $C^*$-algebras and von neumann algebras, Encyclopaedia Math. Sci., 122, Springer, Berlin, 2006 | DOI | MR | Zbl
[3] Borodin A., Bufetov A., “A CLT for Plancherel representations of the infinite-dimensional unitary group”, J. Math. Sci., 190 (2013), 419–426, arXiv: 1203.3010 | DOI | MR | Zbl
[4] Borodin A., Bufetov A., “Plancherel representations of ${\rm U}(\infty)$ and correlated Gaussian free fields”, Duke Math. J., 163 (2014), 2109–2158, arXiv: 1301.0511 | DOI | MR | Zbl
[5] Borodin A., Olshanski G., “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. of Math., 161 (2005), 1319–1422, arXiv: math.RT/0109194 | DOI | MR | Zbl
[6] Borodin A., Olshanski G., “The boundary of the Gelfand–Tsetlin graph: A new approach”, Adv. Math., 230 (2012), 1738–1779, arXiv: 1109.1412 | DOI | MR | Zbl
[7] Borodin A., Olshanski G., “Markov processes on the path space of the Gelfand–Tsetlin graph and on its boundary”, J. Funct. Anal., 263 (2012), 248–303, arXiv: 1009.2029 | DOI | MR | Zbl
[8] Borodin A., Olshanski G., “Markov dynamics on the Thoma cone: a model of time-dependent determinantal processes with infinitely many particles”, Electron. J. Probab., 18 (2013), 75, 43 pp., arXiv: 1303.2794 | DOI | MR | Zbl
[9] Boyer R.P., “Infinite traces of AF-algebras and characters of ${\rm U}(\infty)$”, J. Operator Theory, 9 (1983), 205–236 | MR | Zbl
[10] Boyer R.P., “Characters of the infinite symplectic group—A Riesz ring approach”, J. Funct. Anal., 70 (1987), 357–387 | DOI | MR | Zbl
[11] Bratteli O., Robinson D.W., Operator algebras and quantum statistical mechanics. Equilibrium states. Models in quantum statistical mechanics, Theoret. Math. Phys., Springer, Berlin, 1997 | DOI | MR | Zbl
[12] Dereziński J., “Boson free fields as a limit of fields of a more general type”, Rep. Math. Phys., 21 (1985), 405–417 | DOI | MR | Zbl
[13] Goderis D., Verbeure A., Vets P., “Non-commutative central limits”, Probab. Theory Related Fields, 82 (1989), 527–544 | DOI | MR | Zbl
[14] Goderis D., Verbeure A., Vets P., “Quantum central limit and coarse graining”, Quantum Probability and Applications V, Lecture Notes in Math., 1442, Springer, Berlin, 1990, 178–193 | DOI | MR
[15] Goderis D., Verbeure A., Vets P., “About the exactness of the linear response theory”, Comm. Math. Phys., 136 (1991), 265–283 | DOI | MR | Zbl
[16] Goderis D., Vets P., “Central limit theorem for mixing quantum systems and the CCR-algebra of fluctuations”, Comm. Math. Phys., 122 (1989), 249–265 | DOI | MR | Zbl
[17] Gorin V., “The $q$-Gelfand–Tsetlin graph, Gibbs measures and $q$-Toeplitz matrices”, Adv. Math., 229 (2012), 201–266, arXiv: 1011.1769 | DOI | MR | Zbl
[18] Kerov S.V., Asymptotic representation theory of the symmetric group and its applications in analysis, Transl. Math. Monogr., 219, American Mathematical Society, Providence, RI, 2003 | DOI | MR | Zbl
[19] Kerov S.V., Olshanski G., Vershik A., “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158 (2004), 551–642, arXiv: math.RT/0312270 | DOI | MR | Zbl
[20] Kerov S.V., Vershik A.M., “Characters, factor representations and $K$-functor of the infinite symmetric group”, Operator Algebras and Group Representations II, Monogr. Stud. Math., 18, Pitman, Boston, MA, 1984, 23–32 | MR
[21] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts Monogr. Phys., Springer, Berlin, 1997 | DOI | MR | Zbl
[22] Matsui T., “Bosonic central limit theorem for the one-dimensional $XY$ model”, Rev. Math. Phys., 14 (2002), 675–700 | DOI | MR | Zbl
[23] Matsui T., “On the algebra of fluctuation in quantum spin chains”, Ann. Henri Poincaré, 4 (2003), 63–83, arXiv: math-ph/0202011 | DOI | MR | Zbl
[24] Neshveyev S., Tuset L., Compact quantum groups and their representation categories, Cours Spéc., 20, Société Mathématique de France, Paris, 2013 | MR | Zbl
[25] Noumi M., Yamada H., Mimachi K., “Finite-dimensional representations of the quantum group ${\rm GL}_q(n;C)$ and the zonal spherical functions on ${\rm U}_q(n-1)\backslash{\rm U}_q(n)$”, Japan. J. Math. (N.S.), 19 (1993), 31–80 | DOI | MR | Zbl
[26] Okounkov A., Olshanski G., “Asymptotics of Jack polynomials as the number of variables goes to infinity”, Int. Math. Res. Not., 1998 (1998), 641–682, arXiv: q-alg/9709011 | DOI | MR | Zbl
[27] Olshanski G., “The representation ring of the unitary groups and Markov processes of algebraic origin”, Adv. Math., 300 (2016), 544–615, arXiv: 1504.01646 | DOI | MR | Zbl
[28] Petrov L., “The boundary of the Gelfand–Tsetlin graph: new proof of Borodin–Olshanski's formula, and its $q$-analogue”, Mosc. Math. J., 14 (2014), 121–160, arXiv: 1208.3443 | DOI | MR | Zbl
[29] Petz D., An invitation to the algebra of canonical commutation relations, Leuven Notes Math. Theor. Phys. Ser. A., 2, Leuven University Press, Leuven, 1990 | MR | Zbl
[30] Sato R., Markov semigroups on unitary duals generated by quantized characters, arXiv: 2102.09082
[31] Sato R., “Quantized Vershik–Kerov theory and quantized central measures on branching graphs”, J. Funct. Anal., 277 (2019), 2522–2557, arXiv: 1804.02644 | DOI | MR | Zbl
[32] Sato R., “Inductive limits of compact quantum groups and their unitary representations”, Lett. Math. Phys., 111 (2021), 122, 20 pp., arXiv: 1908.03988 | DOI | MR
[33] Stokman J.V., Dijkhuizen M.S., “Some limit transitions between $BC$ type orthogonal polynomials interpreted on quantum complex Grassmannians”, Publ. Res. Inst. Math. Sci., 35 (1999), 451–500, arXiv: math.QA/9806123 | DOI | MR | Zbl
[34] Tomatsu R., “A characterization of right coideals of quotient type and its application to classification of Poisson boundaries”, Comm. Math. Phys., 275 (2007), 271–296, arXiv: math.OA/0611327 | DOI | MR | Zbl
[35] Ueda Y., “Spherical representations of $C^*$-flows II: Representation system and quantum group setup”, SIGMA, 18 (2022), 050, 43 pp., arXiv: 2201.10931 | DOI | MR | Zbl
[36] Ueda Y., “Spherical representations of $C^*$-flows I”, Münster J. Math., 16 (2023), 201–263, arXiv: 2010.15324 | DOI | MR
[37] Vershik A.M., Kerov S.V., “Asymptotic theory of the characters of a symmetric group”, Funct. Anal. Appl., 15 (1981), 246–255 | DOI | MR
[38] Vershik A.M., Kerov S.V., “Characters and factor representations of the infinite symmetric group”, Sov. Math. Dokl., 23 (1981), 389–392 | MR | Zbl
[39] Vershik A.M., Kerov S.V., “Characters and factor-representations of the infinite unitary group”, Sov. Math. Dokl., 26 (1982), 570–574 | MR | Zbl
[40] Vershik A.M., Kerov S.V., “The $K$-functor (Grothendieck group) of the infinite symmetric group”, J. Sov. Math., 28 (1985), 549–568 | DOI | MR | Zbl
[41] Vershik A.M., Kerov S.V., “Locally semisimple algebras. Combinatorial theory and the $K_0$-functor”, J. Sov. Math., 38 (1987), 1701–1733 | DOI | MR | Zbl
[42] Vershik A.M., Kerov S.V., “The Grothendieck group of infinite symmetric group and symmetric functions (with the elements of the theory of $K_0$-functor of AF-algebras)”, Representation of Lie Groups and Related Topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 39–117 | MR
[43] Voiculescu D., “Sur les représentations factorielles finies de ${\rm U}(\infty )$ et autres groupes semblables”, C. R. Acad. Sci. Paris Sér. A, 279 (1974), 945–946 | MR | Zbl
[44] Voiculescu D., “Représentations factorielles de type ${\rm II}_1$ de ${\rm U}(\infty )$”, J. Math. Pures Appl., 55 (1976), 1–20 | MR | Zbl