Geometry of Gauged Skyrmions
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A work of Manton showed how skymions may be viewed as maps between riemannian manifolds minimising an energy functional, with topologically non-trivial global minimisers given precisely by isometries. We consider a generalisation of this energy functional to gauged skyrmions, valid for a broad class of space and target $3$-manifolds where the target is equipped with an isometric $G$-action. We show that the energy is bounded below by an equivariant version of the degree of a map, describe the associated BPS equations, and discuss and classify solutions in the cases where $G=\mathrm{U}(1)$ and $G=\mathrm{SU}(2)$.
Keywords: topological solitons
Mots-clés : skyrmions, BPS equations.
@article{SIGMA_2023_19_a70,
     author = {Josh Cork and Derek Harland},
     title = {Geometry of {Gauged} {Skyrmions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a70/}
}
TY  - JOUR
AU  - Josh Cork
AU  - Derek Harland
TI  - Geometry of Gauged Skyrmions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a70/
LA  - en
ID  - SIGMA_2023_19_a70
ER  - 
%0 Journal Article
%A Josh Cork
%A Derek Harland
%T Geometry of Gauged Skyrmions
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a70/
%G en
%F SIGMA_2023_19_a70
Josh Cork; Derek Harland. Geometry of Gauged Skyrmions. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a70/

[1] Adam C., Nappi C.R., “The Skyrme model with pion masses”, Phys. Lett. B, 233 (1984), 109–115 | DOI

[2] Adam C., Oles K., Wereszczynski A., “The dielectric Skyrme model”, Phys. Lett. B, 807 (2020), 135560, 6 pp., arXiv: 2005.00018 | DOI | MR | Zbl

[3] Adam C., Sanchez-Guillen J., Wereszczynski A., “A Skyrme-type proposal for baryonic matter”, Phys. Lett. B, 691 (2010), 105–110, arXiv: 1001.4544 | DOI

[4] Arthur K., Tchrakian D.H., “$\mathrm{SO}(3)$ gauged soliton of an $\mathrm{O}(4)$ sigma model on $\mathbb{R}^3$”, Phys. Lett. B, 378 (1996), 187–193, arXiv: hep-th/9601053 | DOI | MR

[5] Atiyah M.F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl

[6] Atiyah M.F., Bott R., “The moment map and equivariant cohomology”, Topology, 23 (1984), 1–28 | DOI | MR | Zbl

[7] Bär C., “Real Killing spinors and holonomy”, Comm. Math. Phys., 154 (1993), 509–521 | DOI | MR | Zbl

[8] Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren Text Ed., Springer, Berlin, 2004 | MR | Zbl

[9] Biswas I., Hurtubise J., “Monopoles on Sasakian three-folds”, Comm. Math. Phys., 339 (2015), 1083–1100, arXiv: 1412.4050 | DOI | MR | Zbl

[10] Brihaye Y., Hartmann B., Tchrakian D.H., “Monopoles and dyons in ${\rm SO}(3)$ gauged Skyrme models”, J. Math. Phys., 42 (2001), 3270–3281, arXiv: hep-th/0010152 | DOI | MR

[11] Callan Jr. C.G., Witten E., “Monopole catalysis of skyrmion decay”, Nuclear Phys. B, 239 (1984), 161–176 | DOI | MR

[12] Callies M., Frégier Y., Rogers C.L., Zambon M., “Homotopy moment maps”, Adv. Math., 303 (2016), 954–1043, arXiv: 1304.2051 | DOI | MR | Zbl

[13] Cieliebak K., Gaio A.R., Mundet i Riera I., Salamon D.A., “The symplectic vortex equations and invariants of Hamiltonian group actions”, J. Symplectic Geom., 1 (2002), 543–645, arXiv: math.SG/0111176 | DOI | MR | Zbl

[14] Cork J., “Skyrmions from calorons”, J. High Energy Phys., 2018:11 (2018), 137, 43 pp., arXiv: 1810.04143 | DOI | MR | Zbl

[15] Cork J., Harland D., Winyard T., “A model for gauged skyrmions with low binding energies”, J. Phys. A, 55 (2022), 015204, 37 pp., arXiv: 2109.06886 | DOI | MR | Zbl

[16] Criado J.C., Khoze V.V., Spannowsky M., “The emergence of electroweak skyrmions through Higgs bosons”, J. High Energy Phys., 2021:3 (2021), 162, 23 pp., arXiv: 2012.07694 | DOI | MR

[17] D'Hoker E., Farhi E., “Decoupling a fermion in the standard electro-weak theory”, Nuclear Phys. B, 248 (1984), 77–89 | DOI | MR

[18] Faddeev L.D., “Some comments on the many-dimensional solitons”, Lett. Math. Phys., 1 (1976), 289–293 | DOI | MR

[19] Gudnason S.B., Nitta M., “Baryonic torii: Toroidal baryons in a generalized Skyrme model”, Phys. Rev. D, 91 (2015), 045018, 9 pp., arXiv: 1410.8407 | DOI | MR

[20] Harland D., “Topological energy bounds for the Skyrme and Faddeev models with massive pions”, Phys. Lett. B, 728 (2014), 518–523, arXiv: 1311.2403 | DOI | Zbl

[21] Livramento L.R., Radu E., Shnir Y., “Solitons in the gauged Skyrme–Maxwell model”, SIGMA, 19 (2023), 042, 17 pp., arXiv: 2301.12848 | DOI | MR | Zbl

[22] Manton N.S., “Geometry of skyrmions”, Comm. Math. Phys., 111 (1987), 469–478 | DOI | MR | Zbl

[23] Manton N.S., Skyrmions. A theory of nuclei, World Scientific Publishing, London, 2022 | DOI

[24] Mundet i Riera I., Teoría de Yang–Mills–Higgs para fibraciones simplécticas, Ph.D. Thesis, Universidad Autónoma de Madrid, 1999, arXiv: math.SG/9912150

[25] Navarro-Lérida F., Radu E., Tchrakian D.H., “On the topological charge of $SO(2)$ gauged Skyrmions in $2+1$ and $3+1$ dimensions”, Phys. Lett. B, 791 (2019), 287–292, arXiv: 1811.09535 | DOI | MR | Zbl

[26] Piette B.M.A.G., Tchrakian D.H., “Static solutions in the ${\rm U}(1)$ gauged Skyrme model”, Phys. Rev. D, 62 (2000), 025020, 10 pp., arXiv: hep-th/9709189 | DOI | MR

[27] Radu E., Tchrakian D.H., “Spinning $\mathrm{U}(1)$ gauged skyrmions”, Phys. Lett. B, 632 (2006), 109–113, arXiv: hep-th/0509014 | DOI

[28] Romão N.M., Speight J.M., “The geometry of the space of BPS vortex-antivortex pairs”, Comm. Math. Phys., 379 (2020), 723–772, arXiv: 1807.00712 | DOI | MR | Zbl

[29] Skyrme T.H.R., “A unified field theory of mesons and baryons”, Nuclear Phys., 31 (1962), 556–569 | DOI | MR

[30] Tchrakian D.H., “Some aspects of Skyrme–Chern–Simons densities”, J. Phys. A, 55 (2022), 245401, 19 pp., arXiv: 2111.13097 | DOI | MR | Zbl

[31] Walton E., “On the geometry of magnetic Skyrmions on thin films”, J. Geom. Phys., 156 (2020), 103802, 20 pp., arXiv: 1908.08428 | DOI | MR | Zbl

[32] Witten E., “Baryons in the $1/N$ expansion”, Nuclear Phys. B, 160 (1979), 57–115 | DOI | MR