Symplectic Double Extensions for Restricted Quasi-Frobenius Lie (Super)Algebras
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we present a method of symplectic double extensions for restricted quasi-Frobenius Lie superalgebras. Certain cocycles in the restricted cohomology represent obstructions to symplectic double extension, which we fully describe. We found a necessary condition for which a restricted quasi-Frobenius Lie superalgebras is a symplectic double extension of a smaller restricted Lie superalgebra. The constructions are illustrated with a few examples.
Keywords: restricted Lie (super)algebra, quasi-Frobenius Lie (super)algebra, double extension.
@article{SIGMA_2023_19_a69,
     author = {Sofiane Bouarroudj and Quentin Ehret and Yoshiaki Maeda},
     title = {Symplectic {Double} {Extensions} for {Restricted} {Quasi-Frobenius} {Lie} {(Super)Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a69/}
}
TY  - JOUR
AU  - Sofiane Bouarroudj
AU  - Quentin Ehret
AU  - Yoshiaki Maeda
TI  - Symplectic Double Extensions for Restricted Quasi-Frobenius Lie (Super)Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a69/
LA  - en
ID  - SIGMA_2023_19_a69
ER  - 
%0 Journal Article
%A Sofiane Bouarroudj
%A Quentin Ehret
%A Yoshiaki Maeda
%T Symplectic Double Extensions for Restricted Quasi-Frobenius Lie (Super)Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a69/
%G en
%F SIGMA_2023_19_a69
Sofiane Bouarroudj; Quentin Ehret; Yoshiaki Maeda. Symplectic Double Extensions for Restricted Quasi-Frobenius Lie (Super)Algebras. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a69/

[1] Ait Aissa T., Mansouri M.W., “Symplectic Novikov Lie algebras”, Comm. Algebra, 50 (2022), 2921–2933, arXiv: 2106.15165 | DOI | MR | Zbl

[2] Backhouse N., “A classification of four-dimensional Lie superalgebras”, J. Math. Phys., 19 (1978), 2400–2402 | DOI | MR | Zbl

[3] Bajo I., Benayadi S., “Abelian para-Kähler structures on Lie algebras”, Differential Geom. Appl., 29 (2011), 160–173, arXiv: 1206.3464 | DOI | MR | Zbl

[4] Baues O., Cortés V., Symplectic Lie groups: symplectic reduction, Lagrangian extensions, and existence of Lagrangian normal subgroups, Astérisque, 379, 2016, vi+90 pp. | MR | Zbl

[5] Bazzoni G., Freibert M., Latorre A., Meinke B., “Complex symplectic structures on Lie algebras”, J. Pure Appl. Algebra, 225 (2021), 106585, 28 pp., arXiv: 1811.05969 | DOI | MR | Zbl

[6] Benamor H., Benayadi S., “Double extension of quadratic Lie superalgebras”, Comm. Algebra, 27 (1999), 67–88 | DOI | MR | Zbl

[7] Benayadi S., “Socle and some invariants of quadratic Lie superalgebras”, J. Algebra, 261 (2003), 245–291 | DOI | MR | Zbl

[8] Benayadi S., Bouarroudj S., “Double extensions of Lie superalgebras in characteristic 2 with nondegenerate invariant supersymmetric bilinear form”, J. Algebra, 510 (2018), 141–179, arXiv: 1707.00970 | DOI | MR | Zbl

[9] Benayadi S., Bouarroudj S., “Manin triples and non-degenerate anti-symmetric bilinear forms on Lie superalgebras in characteristic 2”, J. Algebra, 614 (2023), 199–250, arXiv: 2110.05141 | DOI | MR

[10] Benayadi S., Bouarroudj S., Hajli M., “Double extensions of restricted Lie (super)algebras”, Arnold Math. J., 6 (2020), 231–269, arXiv: 1810.03086 | DOI | MR | Zbl

[11] Bouarroudj S., Grozman P., Leites D., “Deformations of symmetric simple modular Lie (super)algebras”, SIGMA, 19 (2023), 031, 66 pp., arXiv: 0807.3054 | DOI | MR

[12] Bouarroudj S., Krutov A., Leites D., Shchepochkina I., “Non-degenerate invariant (super)symmetric bilinear forms on simple Lie (super)algebras”, Algebr. Represent. Theory, 21 (2018), 897–941, arXiv: 1806.05505 | DOI | MR | Zbl

[13] Bouarroudj S., Lebedev A., Leites D., Shchepochkina I., “Classification of simple Lie superalgebras in characteristic 2”, Int. Math. Res. Not., 2023 (2023), 54–94, arXiv: 1407.1695 | DOI | MR

[14] Bouarroudj S., Maeda Y., Double and Lagrangian extensions for quasi-Frobenius Lie superalgebras, J. Algebra Appl (to appear) , arXiv: 2111.00838 | DOI

[15] Buarrudzh S., Krutov A.O., Lebedev A.V., Leites D.A., Shchepochkina I.M., “Restricted simple Lie (super)algebras in characteristic 3”, Funct. Anal. Appl., 52 (2018), 49–52, arXiv: 1809.08582 | DOI | MR

[16] Dardié J.-M., Médina A., “Algèbres de Lie kählériennes et double extension”, J. Algebra, 185 (1996), 774–795 | DOI | MR | Zbl

[17] Dardié J.-M., Medina A., “Double extension symplectique d'un groupe de Lie symplectique”, Adv. Math., 117 (1996), 208–227 | DOI | MR | Zbl

[18] Darijani I., Usefi H., “The classification of 5-dimensional $p$-nilpotent restricted Lie algebras over perfect fields, I”, J. Algebra, 464 (2016), 97–140, arXiv: 1412.8377 | DOI | MR | Zbl

[19] del Barco V., “Symplectic structures on free nilpotent Lie algebras”, Proc. Japan Acad. Ser. A Math. Sci., 95 (2019), 88–90, arXiv: 1111.3280 | DOI | MR | Zbl

[20] Evans T.J., Fialowski A., “Cohomology of restricted filiform Lie algebras ${\mathfrak{m}}_2^\lambda(p)$”, SIGMA, 15 (2019), 095, 11 pp., arXiv: 1901.07532 | DOI | MR | Zbl

[21] Evans T.J., Fialowski A., “Central extensions of restricted affine nilpotent Lie algebras $n_+(A^{(1)}_1)(p)$”, J. Lie Theory, 33 (2023), 195–215, arXiv: 2208.03783 | MR

[22] Evans T.J., Fuchs D., “A complex for the cohomology of restricted Lie algebras”, J. Fixed Point Theory Appl., 3 (2008), 159–179 | DOI | MR | Zbl

[23] Farnsteiner R., “Note on Frobenius extensions and restricted Lie superalgebras”, J. Pure Appl. Algebra, 108 (1996), 241–256 | DOI | MR | Zbl

[24] Favre G., Santharoubane L.J., “Symmetric, invariant, nondegenerate bilinear form on a Lie algebra”, J. Algebra, 105 (1987), 451–464 | DOI | MR | Zbl

[25] Feldvoss J., Siciliano S., Weigel T., “Outer restricted derivations of nilpotent restricted Lie algebras”, Proc. Amer. Math. Soc., 141 (2013), 171–179, arXiv: 1102.2629 | DOI | MR | Zbl

[26] Fischer M., “Symplectic Lie algebras with degenerate center”, J. Algebra, 521 (2019), 257–283, arXiv: 1609.03314 | DOI | MR | Zbl

[27] Gómez J.R., Khakimdjanov Yu., Navarro R.M., “Some problems concerning to nilpotent Lie superalgebras”, J. Geom. Phys., 51 (2004), 472–485 | DOI | MR | Zbl

[28] Goze M., Remm E., “Contact and Frobeniusian forms on Lie groups”, Differential Geom. Appl., 35 (2014), 74–94 | DOI | MR | Zbl

[29] Hochschild G., “Cohomology of restricted Lie algebras”, Amer. J. Math., 76 (1954), 555–580 | DOI | MR | Zbl

[30] Jacobson N., “Restricted Lie algebras of characteristic $p$”, Trans. Amer. Math. Soc., 50 (1941), 15–25 | DOI | MR | Zbl

[31] Maletesta N., Siciliano S., “Five-dimensional $p$-nilpotent restricted Lie algebras over algebraically closed fields of characteristic $p\geq3$”, J. Algebra, 634 (2023), 755–789 | DOI | MR

[32] May J.P., “The cohomology of restricted Lie algebras and of Hopf algebras”, J. Algebra, 3 (1966), 123–146 | DOI | MR | Zbl

[33] Medina A., Revoy P., “Algèbres de Lie et produit scalaire invariant”, Ann. Sci. École Norm. Sup. (4), 18 (1985), 553–561 | DOI | MR | Zbl

[34] Medina A., Revoy P., “Groupes de Lie à structure symplectique invariante”, Symplectic Geometry, Droupoids, and Integrable Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., 20, Springer, New York, 1991, 247–266 | DOI | MR

[35] Ooms A.I., “On Frobenius Lie algebras”, Comm. Algebra, 8 (1980), 13–52 | DOI | MR | Zbl

[36] Petrogradski V.M., “Identities in the enveloping algebras for modular Lie superalgebras”, J. Algebra, 145 (1992), 1–21 | DOI | MR | Zbl

[37] Shu B., Zhang C., “Restricted representations of the Witt superalgebras”, J. Algebra, 324 (2010), 652–672 | DOI | MR | Zbl

[38] Strade H., Simple Lie algebras over fields of positive characteristic, v. I, De Gruyter Expo. Math., 38, Structure theory, De Gruyter, Berlin, 2004 | DOI | MR | Zbl

[39] Strade H., Simple Lie algebras over fields of positive characteristic, v. III, De Gruyter Expo. Math., 57, Completion of the classification, De Gruyter, Berlin, 2013 | DOI | MR | Zbl

[40] Strade H., Farnsteiner R., Modular Lie algebras and their representations, Monogr. Textbooks Pure Appl. Math., 116, Marcel Dekker, Inc., New York, 1988 | DOI | MR | Zbl

[41] Usefi H., “Lie identities on enveloping algebras of restricted Lie superalgebras”, J. Algebra, 393 (2013), 120–131 | DOI | MR | Zbl

[42] Yao Y.-F., “On representations of restricted Lie superalgebras”, Czechoslovak Math. J., 64 (2014), 845–856 | DOI | MR | Zbl

[43] Yuan J.X., Chen L.Y., Cao Y., “Restricted cohomology of restricted Lie superalgebras”, Acta Math. Sin. (Engl. Ser.), 38 (2022), 2115–2130, arXiv: 2102.10045 | DOI | MR | Zbl

[44] Zhang C., “On the simple modules for the restricted Lie superalgebra ${\mathfrak{sl}}(n|1)$”, J. Pure Appl. Algebra, 213 (2009), 756–765 | DOI | MR | Zbl