Mots-clés : monodromy spaces, isomonodromic deformations, Painlevé equations.
@article{SIGMA_2023_19_a67,
author = {Marius van der Put and Jaap Top},
title = {Moduli {Spaces} for the {Fifth} {Painlev\'e} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a67/}
}
Marius van der Put; Jaap Top. Moduli Spaces for the Fifth Painlevé Equation. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a67/
[1] Acosta-Humánez P.B., van der Put M., Top J., “Isomonodromy for the degenerate fifth Painlevé equation”, SIGMA, 13 (2017), 029, 14 pp., arXiv: 1612.03674 | DOI | MR | Zbl
[2] Boalch P., “Symplectic manifolds and isomonodromic deformations”, Adv. Math., 163 (2001), 137–205, arXiv: 2002.00052 | DOI | MR | Zbl
[3] Boalch P., “Quasi-Hamiltonian geometry of meromorphic connections”, Duke Math. J., 139 (2007), 369–405, arXiv: math.DG/0203161 | DOI | MR | Zbl
[4] Boalch P., “Wild character varieties, meromorphic Hitchin systems and Dynkin diagrams”, Geometry and Physics, v. II, Oxford University Press, Oxford, 2018, 433–454, arXiv: 1703.10376 | MR | Zbl
[5] Chekhov L.O., Mazzocco M., Rubtsov V.N., “Painlevé monodromy manifolds, decorated character varieties, and cluster algebras”, Int. Math. Res. Not., 2017 (2017), 7639–7691, arXiv: 1511.03851 | DOI | MR | Zbl
[6] Clarkson P.A., “Painlevé equations – nonlinear special functions”, J. Comput. Appl. Math., 153 (2003), 127–140 | DOI | MR | Zbl
[7] Clarkson P.A., “Special polynomials associated with rational solutions of the fifth Painlevé equation”, J. Comput. Appl. Math., 178 (2005), 111–129 | DOI | MR | Zbl
[8] Clarkson P.A., “Painlevé equations – nonlinear special functions”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, 331–411 | DOI | MR | Zbl
[9] Gromak V.I., “On the transcendence of the Painlevé equations”, Differ. Equ., 32 (1996), 156–162 | MR | Zbl
[10] Hartshorne R., Algebraic geometry, Grad. Texts Math., 52, Springer, New York, 1977 | DOI | MR | Zbl
[11] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[12] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I General theory and $\tau$-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl
[13] Miwa T., “Painlevé property of monodromy preserving deformation equations and the analyticity of $\tau$ functions”, Publ. Res. Inst. Math. Sci., 17 (1981), 703–721 | DOI | MR | Zbl
[14] Noumi M., Yamada Y., “Higher order Painlevé equations of type $A^{(1)}_l$”, Funkcial. Ekvac., 41 (1998), 483–503, arXiv: math.QA/9808003 | MR | Zbl
[15] Ohyama Y., Okumura S., “A coalescent diagram of the Painlevé equations from the viewpoint of isomonodromic deformations”, J. Phys. A, 39 (2006), 12129–12151 | DOI | MR | Zbl
[16] Ohyama Y., Okumura S., “R. Fuchs' problem of the Painlevé equations from the first to the fifth”, Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., 593, American Mathematical Society, Providence, RI, 2013, 163–178, arXiv: math.CA/0512243 | DOI | MR | Zbl
[17] Okamoto K., “Polynomial Hamiltonians associated with Painlevé equations. I”, Proc. Japan Acad. Ser. A Math. Sci., 56 (1980), 264–268 | DOI | MR | Zbl
[18] Okamoto K., “Studies on the Painlevé equations. I Sixth Painlevé equation $P_{{\rm VI}}$”, Ann. Mat. Pura Appl. (4), 146 (1987), 337–381 | DOI | MR | Zbl
[19] Okamoto K., “Studies on the Painlevé equations. II Fifth Painlevé equation $P_{\rm V}$”, Japan. J. Math. (N.S.), 13 (1987), 47–76 | DOI | MR | Zbl
[20] Paul E., Ramis J.-P., “Dynamics on wild character varieties”, SIGMA, 11 (2015), 068, 21 pp., arXiv: 1508.03122 | DOI | MR | Zbl
[21] Paul E., Ramis J.-P., Dynamics of the fifth Painlevé foliation, arXiv: 2301.08597
[22] van der Put M., Saito M.H., “Moduli spaces for linear differential equations and the Painlevé equations”, Ann. Inst. Fourier (Grenoble), 59 (2009), 2611–2667, arXiv: 0902.1702 | DOI | MR | Zbl
[23] van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren Math. Wiss., 328, Springer, Berlin, 2003 | DOI | MR | Zbl
[24] van der Put M., Top J., “A Riemann–Hilbert approach to Painlevé IV”, J. Nonlinear Math. Phys., 20 (2013), 165–177, arXiv: 1207.4335 | DOI | MR | Zbl
[25] van der Put M., Top J., “Geometric aspects of the Painlevé equations ${\rm PIII}(\rm D_6)$ and ${\rm PIII}(\rm D_7)$”, SIGMA, 10 (2014), 050, 24 pp., arXiv: 1207.4023 | DOI | MR | Zbl
[26] Sen A., Hone A.N.W., Clarkson P.A., “On the Lax pairs of the symmetric Painlevé equations”, Stud. Appl. Math., 117 (2006), 299–319 | DOI | MR | Zbl