Real Slices of ${\rm SL}(r,\mathbb{C})$-Opers
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Through the action of an anti-holomorphic involution $\sigma$ (a real structure) on a Riemann surface $X$, we consider the induced actions on ${\rm SL}(r,\mathbb{C})$-opers and study the real slices fixed by such actions. By constructing this involution for different descriptions of the space of ${\rm SL}(r,\mathbb{C})$-opers, we are able to give a natural parametrization of the fixed point locus via differentials on the Riemann surface, which in turn allows us to study their geometric properties.
Keywords: opers, real structure, differential operator, anti-holomorphic involution, real slice.
@article{SIGMA_2023_19_a66,
     author = {Indranil Biswas and Sebastian Heller and Laura P. Schaposnik},
     title = {Real {Slices} of ${\rm SL}(r,\mathbb{C})${-Opers}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a66/}
}
TY  - JOUR
AU  - Indranil Biswas
AU  - Sebastian Heller
AU  - Laura P. Schaposnik
TI  - Real Slices of ${\rm SL}(r,\mathbb{C})$-Opers
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a66/
LA  - en
ID  - SIGMA_2023_19_a66
ER  - 
%0 Journal Article
%A Indranil Biswas
%A Sebastian Heller
%A Laura P. Schaposnik
%T Real Slices of ${\rm SL}(r,\mathbb{C})$-Opers
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a66/
%G en
%F SIGMA_2023_19_a66
Indranil Biswas; Sebastian Heller; Laura P. Schaposnik. Real Slices of ${\rm SL}(r,\mathbb{C})$-Opers. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a66/

[1] Atiyah M.F., “Riemann surfaces and spin structures”, Ann. Sci. École Norm. Sup. (4), 4 (1971), 47–62 | DOI | MR | Zbl

[2] Atiyah M.F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl

[3] Baraglia D., Schaposnik L.P., “Higgs bundles and $(A,B,A)$-branes”, Comm. Math. Phys., 331 (2014), 1271–1300, arXiv: 1305.4638 | DOI | MR | Zbl

[4] Baraglia D., Schaposnik L.P., “Real structures on moduli spaces of Higgs bundles”, Adv. Theor. Math. Phys., 20 (2016), 525–551, arXiv: 1309.1195 | DOI | MR | Zbl

[5] Beilinson A.A., Drinfeld V.G., Opers, arXiv: math.AG/0501398

[6] Beilinson A.A., Schechtman V.V., “Determinant bundles and Virasoro algebras”, Comm. Math. Phys., 118 (1988), 651–701 | DOI | MR | Zbl

[7] Ben-Zvi D., Biswas I., “Theta functions and Szegő kernels”, Int. Math. Res. Not., 2003 (2003), 1305–1340, arXiv: math.AG/0211441 | DOI | MR | Zbl

[8] Biswas I., “Coupled connections on a compact Riemann surface”, J. Math. Pures Appl. (9), 82 (2003), 1–42 | DOI | MR | Zbl

[9] Biswas I., Huisman J., Hurtubise J., “The moduli space of stable vector bundles over a real algebraic curve”, Math. Ann., 347 (2010), 201–233, arXiv: 0901.3071 | DOI | MR | Zbl

[10] Earle C.J., “On the moduli of closed Riemann surfaces with symmetries”, Advances in the Theory of Riemann Surfaces, Proc. Conf. (Stony Brook, NY, 1969), Ann. of Math. Stud., 66, Princeton University Press, Princeton, NJ, 1971, 119–130 | MR

[11] Faltings G., “Real projective structures on Riemann surfaces”, Compositio Math., 48, 1983, 223–269 | MR | Zbl

[12] Goldman W.M., “The symplectic nature of fundamental groups of surfaces”, Adv. Math., 54 (1984), 200–225 | DOI | MR | Zbl

[13] Goldman W.M., “Projective structures with Fuchsian holonomy”, J. Differential Geom., 25 (1987), 297–326 | DOI | MR | Zbl

[14] Griffiths P., Harris J., Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience, New York, 1978 | DOI | MR | Zbl

[15] Gunning R.C., On uniformization of complex manifolds: the role of connections, Math. Notes, 22, Princeton University Press, Princeton, NJ, 1978 | DOI | MR | Zbl

[16] Hejhal D.A., “Monodromy groups and linearly polymorphic functions”, Acta Math., 135 (1975), 1–55 | DOI | MR | Zbl

[17] Heller S., “Real projective structures on Riemann surfaces and new hyper-Kähler manifolds”, Manuscripta Math., 171 (2023), 241–262, arXiv: 1906.10350 | DOI | MR | Zbl

[18] Hitchin N., “Stable bundles and integrable systems”, Duke Math. J., 54 (1987), 91–114 | DOI | MR | Zbl

[19] Hubbard J.H., “The monodromy of projective structures”, Riemann Surfaces and Related Topics, Proceedings of the 1978 Stony Brook Conference (State University New York, Stony Brook, NY, 1978), Ann. of Math. Stud., 97, Princeton University Press, Princeton, NJ, 1981, 257–275 | DOI | MR

[20] Kravetz S., “On the geometry of Teichmüller spaces and the structure of their modular groups”, Ann. Acad. Sci. Fenn. Ser. A I, 278, 1959, 35 pp. | MR | Zbl

[21] Takhtajan L.A., “Real projective connections, VI Smirnov's approach, and black-hole-type solutions of the Liouville equation”, Theoret. and Math. Phys., 181 (2014), 1307–1316, arXiv: 1407.1815 | DOI | MR | Zbl

[22] Teschner J., “Quantization of the quantum Hitchin system and the real geometric Langlands correspondence”, Geometry and Physics, v. I, Oxford University Press, Oxford, 2018, 347–375 | DOI | MR | Zbl