Tridendriform Structures
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Inspired by the work of J-L. Loday and M. Ronco, we build free tridendriform algebras over reduced trees and we show that they have a coproduct satisfying some compatibilities with the tridendriform products. Its graded dual is the opposite bialgebra of TSym introduced by N. Bergeron et al., which is described by the lightening splitting of a tree. In particular, we can split the product in three pieces and the coproduct in two pieces with Hopf compatibilities. We generate its codendriform primitives and count its coassociative primitives thanks to L. Foissy's work.
Keywords: Hopf algebras, tridendriform, dendriform, Schröder trees.
@article{SIGMA_2023_19_a65,
     author = {Pierre Catoire},
     title = {Tridendriform {Structures}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a65/}
}
TY  - JOUR
AU  - Pierre Catoire
TI  - Tridendriform Structures
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a65/
LA  - en
ID  - SIGMA_2023_19_a65
ER  - 
%0 Journal Article
%A Pierre Catoire
%T Tridendriform Structures
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a65/
%G en
%F SIGMA_2023_19_a65
Pierre Catoire. Tridendriform Structures. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a65/

[1] Aguiar M., Bergeron N., Sottile F., “Combinatorial Hopf algebras and generalized Dehn–Sommerville relations”, Compos. Math., 142 (2006), 1–30, arXiv: math.CO/0310016 | DOI | MR | Zbl

[2] Aguiar M., Sottile F., “Structure of the Loday–Ronco Hopf algebra of trees”, J. Algebra, 295 (2006), 473–511, arXiv: math.CO/0409022 | DOI | MR | Zbl

[3] Bergeron N., González D'León R.S., Li S.X., Pang C.Y.A., Vargas Y., “Hopf algebras of parking functions and decorated planar trees”, Adv. in Appl. Math., 143 (2023), 102436, 62 pp., arXiv: 2109.05434 | DOI | MR | Zbl

[4] Burgunder E., Delcroix-Oger B., “Structure theorems for dendriform and tridendriform algebras”, Algebraic Combinatorics, Resurgence, Moulds and Applications (CARMA), v. 1, IRMA Lect. Math. Theor. Phys., 31, EMS Publ. House, Berlin, 2020, 29–66 | DOI | MR

[5] Burgunder E., Ronco M., “Tridendriform structure on combinatorial Hopf algebras”, J. Algebra, 324 (2010), 2860–2883, arXiv: 0910.0403 | DOI | MR | Zbl

[6] Chapoton F., “Un théorème de Cartier–Milnor–Moore–Quillen pour les bigèbres dendriformes et les algèbres braces”, J. Pure Appl. Algebra, 168 (2002), 1–18, arXiv: math.QA/0005253 | DOI | MR | Zbl

[7] Ebrahimi-Fard K., Patras F., “Monotone, free, and boolean cumulants: A shuffle algebra approach”, Adv. Math., 328 (2018), 112–132, arXiv: 1701.06152 | DOI | MR | Zbl

[8] Foissy L., Algèbres de Hopf combinatoires, http://loic.foissy.free.fr/pageperso/Hopf.pdf

[9] Foissy L., “Bidendriform bialgebras, trees, and free quasi-symmetric functions”, J. Pure Appl. Algebra, 209 (2007), 439–459, arXiv: math.RA/0505207 | DOI | MR | Zbl

[10] Foissy L., “Free brace algebras are free pre-Lie algebras”, Comm. Algebra, 38 (2010), 3358–3369, arXiv: 0809.2866 | DOI | MR | Zbl

[11] Foissy L., Patras F., “Lie theory for quasi-shuffle bialgebras”, Periods in Quantum Field Theory and Arithmetic, Springer Proc. Math. Stat., 314, Springer, Cham, 2020, arXiv: 1605.02444 | DOI | MR | Zbl

[12] Loday J.–L., “Scindement d'associativité et algèbres de Hopf”, Actes des Journées Mathématiques à la Mémoire de Jean Leray, Sémin. Congr., 9, Société Mathématique de France, Paris, 2004, 155–172, arXiv: math.QA/0402084 | MR | Zbl

[13] Loday J.-L., “On the algebra of quasi-shuffles”, Manuscripta Math., 123 (2007), 79–93, arXiv: math.QA/0506498 | DOI | MR | Zbl

[14] Loday J.-L., Ronco M., “Algèbres de Hopf colibres”, C. R. Math. Acad. Sci. Paris, 337 (2003), 153–158 | DOI | MR | Zbl

[15] Loday J.-L., Ronco M., “Trialgebras and families of polytopes”, Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory, Contemp. Math., 346, American Mathematical Society, Providence, RI, 2004, 369–398, arXiv: math.AT/0205043 | DOI | MR | Zbl

[16] Loday J.-L., Ronco M.O., “Hopf algebra of the planar binary trees”, Adv. Math., 139 (1998), 293–309 | DOI | MR | Zbl

[17] Novelli J.-C., Thibon J.-Y., “Binary shuffle bases for quasi-symmetric functions”, Ramanujan J., 40 (2016), 207–225, arXiv: 1305.5032 | DOI | MR | Zbl

[18] Palacios P., Ronco M.O., “Weak Bruhat order on the set of faces of the permutohedron and the associahedron”, J. Algebra, 299 (2006), 648–678 | DOI | MR | Zbl

[19] Ronco M., “Eulerian idempotents and Milnor–Moore theorem for certain non-cocommutative Hopf algebras”, J. Algebra, 254 (2002), 152–172 | DOI | MR | Zbl

[20] Sloane N.J.A., The on-line encyclopedia of integers sequences, https://oeis.org/ | MR

[21] Zhang Y., Gao X., Manchon D., “Free (tri)dendriform family algebras”, J. Algebra, 547 (2020), 456–493, arXiv: 1909.08946 | DOI | MR | Zbl