@article{SIGMA_2023_19_a65,
author = {Pierre Catoire},
title = {Tridendriform {Structures}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a65/}
}
Pierre Catoire. Tridendriform Structures. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a65/
[1] Aguiar M., Bergeron N., Sottile F., “Combinatorial Hopf algebras and generalized Dehn–Sommerville relations”, Compos. Math., 142 (2006), 1–30, arXiv: math.CO/0310016 | DOI | MR | Zbl
[2] Aguiar M., Sottile F., “Structure of the Loday–Ronco Hopf algebra of trees”, J. Algebra, 295 (2006), 473–511, arXiv: math.CO/0409022 | DOI | MR | Zbl
[3] Bergeron N., González D'León R.S., Li S.X., Pang C.Y.A., Vargas Y., “Hopf algebras of parking functions and decorated planar trees”, Adv. in Appl. Math., 143 (2023), 102436, 62 pp., arXiv: 2109.05434 | DOI | MR | Zbl
[4] Burgunder E., Delcroix-Oger B., “Structure theorems for dendriform and tridendriform algebras”, Algebraic Combinatorics, Resurgence, Moulds and Applications (CARMA), v. 1, IRMA Lect. Math. Theor. Phys., 31, EMS Publ. House, Berlin, 2020, 29–66 | DOI | MR
[5] Burgunder E., Ronco M., “Tridendriform structure on combinatorial Hopf algebras”, J. Algebra, 324 (2010), 2860–2883, arXiv: 0910.0403 | DOI | MR | Zbl
[6] Chapoton F., “Un théorème de Cartier–Milnor–Moore–Quillen pour les bigèbres dendriformes et les algèbres braces”, J. Pure Appl. Algebra, 168 (2002), 1–18, arXiv: math.QA/0005253 | DOI | MR | Zbl
[7] Ebrahimi-Fard K., Patras F., “Monotone, free, and boolean cumulants: A shuffle algebra approach”, Adv. Math., 328 (2018), 112–132, arXiv: 1701.06152 | DOI | MR | Zbl
[8] Foissy L., Algèbres de Hopf combinatoires, http://loic.foissy.free.fr/pageperso/Hopf.pdf
[9] Foissy L., “Bidendriform bialgebras, trees, and free quasi-symmetric functions”, J. Pure Appl. Algebra, 209 (2007), 439–459, arXiv: math.RA/0505207 | DOI | MR | Zbl
[10] Foissy L., “Free brace algebras are free pre-Lie algebras”, Comm. Algebra, 38 (2010), 3358–3369, arXiv: 0809.2866 | DOI | MR | Zbl
[11] Foissy L., Patras F., “Lie theory for quasi-shuffle bialgebras”, Periods in Quantum Field Theory and Arithmetic, Springer Proc. Math. Stat., 314, Springer, Cham, 2020, arXiv: 1605.02444 | DOI | MR | Zbl
[12] Loday J.–L., “Scindement d'associativité et algèbres de Hopf”, Actes des Journées Mathématiques à la Mémoire de Jean Leray, Sémin. Congr., 9, Société Mathématique de France, Paris, 2004, 155–172, arXiv: math.QA/0402084 | MR | Zbl
[13] Loday J.-L., “On the algebra of quasi-shuffles”, Manuscripta Math., 123 (2007), 79–93, arXiv: math.QA/0506498 | DOI | MR | Zbl
[14] Loday J.-L., Ronco M., “Algèbres de Hopf colibres”, C. R. Math. Acad. Sci. Paris, 337 (2003), 153–158 | DOI | MR | Zbl
[15] Loday J.-L., Ronco M., “Trialgebras and families of polytopes”, Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory, Contemp. Math., 346, American Mathematical Society, Providence, RI, 2004, 369–398, arXiv: math.AT/0205043 | DOI | MR | Zbl
[16] Loday J.-L., Ronco M.O., “Hopf algebra of the planar binary trees”, Adv. Math., 139 (1998), 293–309 | DOI | MR | Zbl
[17] Novelli J.-C., Thibon J.-Y., “Binary shuffle bases for quasi-symmetric functions”, Ramanujan J., 40 (2016), 207–225, arXiv: 1305.5032 | DOI | MR | Zbl
[18] Palacios P., Ronco M.O., “Weak Bruhat order on the set of faces of the permutohedron and the associahedron”, J. Algebra, 299 (2006), 648–678 | DOI | MR | Zbl
[19] Ronco M., “Eulerian idempotents and Milnor–Moore theorem for certain non-cocommutative Hopf algebras”, J. Algebra, 254 (2002), 152–172 | DOI | MR | Zbl
[20] Sloane N.J.A., The on-line encyclopedia of integers sequences, https://oeis.org/ | MR
[21] Zhang Y., Gao X., Manchon D., “Free (tri)dendriform family algebras”, J. Algebra, 547 (2020), 456–493, arXiv: 1909.08946 | DOI | MR | Zbl