@article{SIGMA_2023_19_a64,
author = {Tea Martini\'c Bila\'c and Stjepan Meljanac},
title = {Realizations of the {Extended} {Snyder} {Model}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a64/}
}
Tea Martinić Bilać; Stjepan Meljanac. Realizations of the Extended Snyder Model. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a64/
[1] Amelino-Camelia G., Arzano M., “Coproduct and star product in field theories on Lie-algebra noncommutative space-times”, Phys. Rev. D, 65 (2002), 084044, 8 pp., arXiv: hep-th/0105120 | DOI | MR
[2] Amelino-Camelia G., Lukierski J., Nowicki A., “$\kappa$-deformed covariant phase space and quantum-gravity uncertainty relations”, Phys. Atomic Nuclei, 61 (1998), 1811–1815, arXiv: hep-th/9706031 | MR
[3] Arzano M., Kowalski-Glikman J., “Deformations of spacetime symmetries – gravity, group-valued momenta, and non-commutative fields”, Lecture Notes in Phys., 986, Springer, Berlin, 2021 | DOI | MR | Zbl
[4] Banerjee R., Kumar K., Roychowdhury D., “Symmetries of Snyder–de Sitter space and relativistic particle dynamics”, J. High Energy Phys., 2011:3 (2011), 060, 14 pp., arXiv: 1101.2021 | DOI | MR | Zbl
[5] Battisti M.V., Meljanac S., “Modification of Heisenberg uncertainty relations in noncommutative Snyder space-time geometry”, Phys. Rev. D, 79 (2009), 067505, 4 pp., arXiv: 0812.3755 | DOI | MR
[6] Battisti M.V., Meljanac S., “Scalar field theory on noncommutative Snyder spacetime”, Phys. Rev. D, 82 (2010), 024028, 9 pp., arXiv: 1003.2108 | DOI | MR
[7] Borowiec A., Pachoł A., “The classical basis for the $\kappa$-Poincaré Hopf algebra and doubly special relativity theories”, J. Phys. A, 43 (2010), 045203, 10 pp., arXiv: 0903.5251 | DOI | MR | Zbl
[8] Doplicher S., Fredenhagen K., Roberts J.E., “Spacetime quantization induced by classical gravity”, Phys. Lett. B, 331 (1994), 39–44 | DOI | MR
[9] Doplicher S., Fredenhagen K., Roberts J.E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl
[10] Franchino-Viñas S.A., Mignemi S., “Worldline formalism in Snyder spaces”, Phys. Rev. D, 98 (2018), 065010, 10 pp., arXiv: 1806.11467 | DOI | MR
[11] Garay L.J., “Quantum gravity and minimum length”, Internat. J. Modern Phys. A, 10 (1995), 145–165, arXiv: gr-qc/9403008 | DOI
[12] Girelli F., Livine E.R., “Scalar field theory in Snyder space-time: alternatives”, J. High Energy Phys., 2011:3 (2011), 132, 31 pp., arXiv: 1004.0621 | DOI | MR | Zbl
[13] Guo H.-Y., Huang C.-G., Wu H.-T., “Yang's model as triply special relativity and the Snyder's model – de Sitter special relativity duality”, Phys. Lett. B, 663 (2008), 270–274, arXiv: 0801.1146 | DOI | MR | Zbl
[14] Kowalski-Glikman J., Nowak S., “Non-commutative space-time of doubly special relativity theories”, Internat. J. Modern Phys. D, 12 (2003), 299–315, arXiv: hep-th/0204245 | DOI | MR | Zbl
[15] Kowalski-Glikman J., Smolin L., “Triply special relativity”, Phys. Rev. D, 70 (2004), 065020, 6 pp., arXiv: hep-th/0406276 | DOI | MR
[16] Lukierski J., Meljanac S., Mignemi S., Pachoł A., Quantum perturbative solutions of extended Snyder and Yang models with spontaneous symmetry breaking, arXiv: 2212.02316
[17] Lukierski J., Meljanac S., Mignemi S., Pachoł A., “Generalized quantum phase spaces for the $\kappa$-deformed extended Snyder model”, Phys. Lett. B, 838 (2023), 137709, 8 pp., arXiv: 2208.06712 | DOI | MR
[18] Lukierski J., Nowicki A., Ruegg H., “New quantum Poincaré algebra and $\kappa$-deformed field theory”, Phys. Lett. B, 293 (1992), 344–352 | DOI | MR | Zbl
[19] Lukierski J., Ruegg H., Nowicki A., Tolstoy V.N., “$q$-deformation of Poincaré algebra”, Phys. Lett. B, 264 (1991), 331–338 | DOI | MR
[20] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[21] Meljanac S., Krešić-Jurić S., “Differential structure on $\kappa$-Minkowski space, and $\kappa$-Poincaré algebra”, Internat. J. Modern Phys. A, 26 (2011), 3385–3402, arXiv: 1004.4647 | DOI | MR | Zbl
[22] Meljanac S., Krešić-Jurić S., Stojić M., “Covariant realizations of kappa-deformed space”, Eur. Phys. J. C, 51 (2007), 229–240, arXiv: hep-th/0702215 | DOI | MR | Zbl
[23] Meljanac S., Martinić Bilać T., Krešić-Jurić S., “Generalized Heisenberg algebra applied to realizations of the orthogonal, Lorentz, and Poincaré algebras and their dual extensions”, J. Math. Phys., 61 (2020), 051705, 13 pp., arXiv: 2003.02726 | DOI | MR | Zbl
[24] Meljanac S., Meljanac D., Samsarov A., Stojić M., “$\kappa$-deformed Snyder spacetime”, Modern Phys. Lett. A, 25 (2010), 579–590, arXiv: 0912.5087 | DOI | MR | Zbl
[25] Meljanac S., Meljanac D., Samsarov A., Stojic M., “Kappa Snyder deformations of Minkowski spacetime, realizations and Hopf algebra”, Phys. Rev. D, 83 (2011), 065009, 16 pp., arXiv: 1102.1655 | DOI
[26] Meljanac S., Mignemi S., “Associative realizations of the extended Snyder model”, Phys. Rev. D, 102 (2020), 126011, 9 pp., arXiv: 2007.13498 | DOI | MR
[27] Meljanac S., Mignemi S., “Associative realizations of $\kappa$-deformed extended Snyder model”, Phys. Rev. D, 104 (2021), 086006, 9 pp., arXiv: 2106.08131 | DOI | MR
[28] Meljanac S., Mignemi S., “Unification of $\kappa$-Minkowski and extended Snyder spaces”, Phys. Lett. B, 814 (2021), 136117, 5 pp., arXiv: 2101.05275 | DOI | MR | Zbl
[29] Meljanac S., Mignemi S., “Generalizations of Snyder model to curved spaces”, Phys. Lett. B, 833 (2022), 137289, 6 pp., arXiv: 2206.04772 | DOI | MR | Zbl
[30] Meljanac S., Mignemi S., “Noncommutative Yang model and its generalizations”, J. Math. Phys., 64 (2023), 023505, 9 pp., arXiv: 2211.11755 | DOI | MR | Zbl
[31] Meljanac S., Pachoł A., “Heisenberg doubles for Snyder-type models”, Symmetry, 13 (2021), 1055, 13 pp., arXiv: 2101.02512 | DOI
[32] Meljanac S., Štrajn R., “Deformed quantum phase spaces, realizations, star products and twists”, SIGMA, 18 (2022), 022, 20 pp., arXiv: 2112.12038 | DOI | MR | Zbl
[33] Mignemi S., “The Snyder–de Sitter model from six dimensions”, Classical Quantum Gravity, 26 (2009), 245020, 9 pp. | DOI | MR | Zbl
[34] Mignemi S., Rosati G., “Relative-locality phenomenology on Snyder spacetime”, Classical Quantum Gravity, 35 (2018), 145006, 17 pp., arXiv: 1803.02134 | DOI | MR | Zbl
[35] Mignemi S., Štrajn R., “Snyder dynamics in a Schwarzschild spacetime”, Phys. Rev. D, 90 (2014), 044019, 5 pp., arXiv: 1404.6396 | DOI
[36] Snyder H.S., “Quantized space-time”, Phys. Rev., 71 (1947), 38–41 | DOI | MR | Zbl