@article{SIGMA_2023_19_a63,
author = {Alba Grassi and Qianyu Hao and Andrew Neitzke},
title = {Exponential {Networks,} {WKB} and {Topological} {String}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a63/}
}
Alba Grassi; Qianyu Hao; Andrew Neitzke. Exponential Networks, WKB and Topological String. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a63/
[1] Aganagic M., Cheng M.C.N., Dijkgraaf R., Krefl D., Vafa C., “Quantum geometry of refined topological strings”, J. High Energy Phys., 2012:11 (2012), 019, 53 pp., arXiv: 1105.0630 | DOI | MR
[2] Aganagic M., Dijkgraaf R., Klemm A., Mariño M., Vafa C., “Topological strings and integrable hierarchies”, Comm. Math. Phys., 261 (2006), 451–516, arXiv: hep-th/0312085 | DOI | MR | Zbl
[3] Aganagic M., Klemm A., Vafa C., “Disk instantons, mirror symmetry and the duality web”, Z. Naturforsch. A, 57 (2002), 1–28, arXiv: hep-th/0105045 | DOI | MR | Zbl
[4] Aganagic M., Shakirov S., “Knot homology and refined Chern–Simons index”, Comm. Math. Phys., 333 (2015), 187–228, arXiv: 1105.5117 | DOI | MR | Zbl
[5] Alexandrov S., Pioline B., “Conformal TBA for resolved conifolds”, Ann. Henri Poincaré, 23 (2022), 1909–1949, arXiv: 2106.12006 | DOI | MR | Zbl
[6] Alim M., Hollands L., Tulli I., “Quantum curves, resurgence and exact WKB”, SIGMA, 19 (2023), 009, 82 pp., arXiv: 2203.08249 | DOI | MR | Zbl
[7] Alim M., Saha A., Teschner J., Tulli I., “Mathematical structures of non-perturbative topological string theory: from GW to DT invariants”, Comm. Math. Phys., 399 (2023), 1039–1101, arXiv: 2109.06878 | DOI | MR
[8] Alim M., Saha A., Tulli I., “A hyperkähler geometry associated to the BPS structure of the resolved conifold”, J. Geom. Phys., 180 (2022), 104618, 32 pp., arXiv: 2106.11976 | DOI | MR | Zbl
[9] Banerjee S., Longhi P., Romo M., “Exploring 5d BPS spectra with exponential networks”, Ann. Henri Poincaré, 20 (2019), 4055–4162, arXiv: 1811.02875 | DOI | MR | Zbl
[10] Banerjee S., Longhi P., Romo M., “Exponential BPS graphs and D brane counting on toric Calabi–Yau threefolds: Part I”, Comm. Math. Phys., 388 (2021), 893–945, arXiv: 1910.05296 | DOI | MR | Zbl
[11] Banerjee S., Longhi P., Romo M., Exponential BPS graphs and D brane counting on toric Calabi–Yau threefolds: Part II, arXiv: 2012.09769
[12] Beem C., Dimofte T., Pasquetti S., “Holomorphic blocks in three dimensions”, J. High Energy Phys., 2014:12 (2014), 177, 120 pp., arXiv: 1211.1986 | DOI | MR | Zbl
[13] Bershtein M., Gavrylenko P., Grassi A., “Quantum spectral problems and isomonodromic deformations”, Comm. Math. Phys., 393 (2022), 347–418, arXiv: 2105.00985 | DOI | MR | Zbl
[14] Bershtein M., Gavrylenko P., Marshakov A., “Cluster integrable systems, $q$-Painlevé equations and their quantization”, J. High Energy Phys., 2018:2 (2018), 077, 34 pp., arXiv: 1711.02063 | DOI | MR
[15] Bershtein M.A., Shchechkin A.I., “$q$-deformed Painlevé $\tau$ function and $q$-deformed conformal blocks”, J. Phys. A, 50 (2017), 085202, 23 pp., arXiv: 1608.02566 | DOI | MR | Zbl
[16] Bonelli G., Del Monte F., Tanzini A., “BPS quivers of five-dimensional SCFTs, topological strings and $q$-Painlevé equations”, Ann. Henri Poincaré, 22 (2021), 2721–2773, arXiv: 2007.11596 | DOI | MR | Zbl
[17] Bonelli G., Grassi A., Tanzini A., “Quantum curves and $q$-deformed Painlevé equations”, Lett. Math. Phys., 109 (2019), 1961–2001, arXiv: 1710.11603 | DOI | MR | Zbl
[18] Bouchard V., Klemm A., Mariño M., Pasquetti S., “Remodeling the B-model”, Comm. Math. Phys., 287 (2009), 117–178, arXiv: 0709.1453 | DOI | MR | Zbl
[19] Bridgeland T., “Riemann–Hilbert problems for the resolved conifold and non-perturbative partition functions”, J. Differential Geom., 115 (2020), 395–435, arXiv: 1703.02776 | DOI | MR | Zbl
[20] Bullimore M., Crew S., Zhang D., “Boundaries, Vermas and factorisation”, J. High Energy Phys., 2021:4 (2021), 263, 50 pp., arXiv: 2010.09741 | DOI | MR | Zbl
[21] Bullimore M., Zhang D., “3d $\mathcal N = 4$ gauge theories on an elliptic curve”, SciPost Phys., 13 (2022), 005, 91 pp., arXiv: 2109.10907 | DOI | MR
[22] Cecotti S., Gaiotto D., Vafa C., “$tt^\ast$ geometry in 3 and 4 dimensions”, J. High Energy Phys., 2014:5 (2014), 055, 112 pp., arXiv: 1312.1008 | DOI | MR | Zbl
[23] Cheng S., Sułkowski P., “Refined open topological strings revisited”, Phys. Rev. D, 104 (2021), 106012, 35 pp., arXiv: 2104.00713 | DOI | MR
[24] Cherkis S.A., “Phases of five-dimensional theories, monopole walls, and melting crystals”, J. High Energy Phys., 2014:6 (2014), 027, 38 pp., arXiv: 1402.7117 | DOI | MR
[25] Closset C., Del Zotto M., “On 5d SCFTs and their BPS quivers part I: B-branes and brane tilings”, Adv. Theor. Math. Phys., 26 (2022), 37–142, arXiv: 1912.13502 | DOI | MR | Zbl
[26] Codesido S., Grassi A., Mariño M., “Spectral theory and mirror curves of higher genus”, Ann. Henri Poincaré, 18 (2017), 559–622, arXiv: 1507.02096 | DOI | MR | Zbl
[27] Codesido S., Mariño M., “Holomorphic anomaly and quantum mechanics”, J. Phys. A, 51 (2018), 055402, 30 pp., arXiv: 1612.07687 | DOI | MR | Zbl
[28] Codesido S., Mariño M., Schiappa R., “Non-perturbative quantum mechanics from non-perturbative strings”, Ann. Henri Poincaré, 20 (2019), 543–603, arXiv: 1712.02603 | DOI | MR | Zbl
[29] Couso-Santamaría R., Edelstein J.D., Schiappa R., Vonk M., “Resurgent transseries and the holomorphic anomaly: nonperturbative closed strings in local $\mathbb{CP}^2$”, Comm. Math. Phys., 338 (2015), 285–346, arXiv: 1407.4821 | DOI | MR | Zbl
[30] Couso-Santamaría R., Mariño M., Schiappa R., “Resurgence matches quantization”, J. Phys. A, 50 (2017), 145402, 34 pp., arXiv: 1610.06782 | DOI | MR | Zbl
[31] Del Monte F., Longhi P., “Quiver symmetries and wall-crossing invariance”, Comm. Math. Phys., 398 (2023), 89–132, arXiv: 2107.14255 | DOI | MR | Zbl
[32] Dijkgraaf R., Hollands L., Sułkowski P., Vafa C., “Supersymmetric gauge theories, intersecting branes and free fermions”, J. High Energy Phys., 2008:2 (2008), 106, 57 pp., arXiv: 0709.4446 | DOI | MR
[33] Dimofte T., Gaiotto D., Gukov S., “Gauge theories labelled by three-manifolds”, Comm. Math. Phys., 325 (2014), 367–419, arXiv: 1108.4389 | DOI | MR | Zbl
[34] Dimofte T., Gaiotto D., Paquette N.M., “Dual boundary conditions in 3d SCFT's”, J. High Energy Phys., 2018:5 (2018), 060, 101 pp., arXiv: 1712.07654 | DOI | MR
[35] Dimofte T., Gukov S., Hollands L., “Vortex counting and Lagrangian 3-manifolds”, Lett. Math. Phys., 98 (2011), 225–287, arXiv: 1006.0977 | DOI | MR | Zbl
[36] Dingle R.B., Morgan G.J., “WKB methods for difference equations I”, Appl. Sci. Res., 18 (1968), 221–237 | DOI | MR
[37] Drukker N., Mariño M., Putrov P., “Nonperturbative aspects of ABJM theory”, J. High Energy Phys., 2011:11 (2011), 141, 29 pp., arXiv: 1103.4844 | DOI | MR | Zbl
[38] Eager R., Selmani S.A., Walcher J., “Exponential networks and representations of quivers”, J. High Energy Phys., 2017:8 (2017), 063, 68 pp., arXiv: 1611.06177 | DOI | MR
[39] Elliott C., Pestun V., “Multiplicative Hitchin systems and supersymmetric gauge theory”, Selecta Math. (N.S.), 25 (2019), 64, 82 pp., arXiv: 1812.05516 | DOI | MR | Zbl
[40] Faddeev L.D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254, arXiv: hep-th/9504111 | DOI | MR | Zbl
[41] Faddeev L.D., Kashaev R.M., “Quantum dilogarithm”, Modern Phys. Lett. A, 9 (1994), 427–434, arXiv: hep-th/9310070 | DOI | MR | Zbl
[42] Franco S., Hatsuda Y., Mariño M., “Exact quantization conditions for cluster integrable systems”, J. Stat. Mech. Theory Exp., 2016 (2016), 063107, 30 pp., arXiv: 1512.03061 | DOI | MR | Zbl
[43] Gaiotto D., Opers and TBA, arXiv: 1403.6137
[44] Gaiotto D., Moore G.W., Neitzke A., “Four-dimensional wall-crossing via three-dimensional field theory”, Comm. Math. Phys., 299 (2010), 163–224, arXiv: 0807.4723 | DOI | MR | Zbl
[45] Gaiotto D., Moore G.W., Neitzke A., “Wall-crossing in coupled 2d-4d systems”, J. High Energy Phys., 2012:12 (2012), 082, 169 pp., arXiv: 1103.2598 | DOI | MR
[46] Gaiotto D., Moore G.W., Neitzke A., “Framed BPS states”, Adv. Theor. Math. Phys., 17 (2013), 241–397, arXiv: 1006.0146 | DOI | MR | Zbl
[47] Gaiotto D., Moore G.W., Neitzke A., “Spectral networks”, Ann. Henri Poincaré, 14 (2013), 1643–1731, arXiv: 1204.4824 | DOI | MR | Zbl
[48] Gaiotto D., Moore G.W., Neitzke A., “Wall-crossing, Hitchin systems, and the WKB approximation”, Adv. Math., 234 (2013), 239–403, arXiv: 0907.3987 | DOI | MR | Zbl
[49] Garoufalidis S., Kashaev R., “Resurgence of Faddeev's quantum dilogarithm”, Topology and Geometry – a Collection of Cssays Dedicated to Vladimir G Turaev, IRMA Lect. Math. Theor. Phys., 33, Eur. Math. Soc., Zürich, 2021, 257–271, arXiv: 2008.12465 | DOI | MR
[50] Gopakumar R., Vafa C., M-theory and topological strings-II, arXiv: hep-th/9812127
[51] Grassi A., Gu J., “BPS relations from spectral problems and blowup equations”, Lett. Math. Phys., 109 (2019), 1271–1302, arXiv: 1609.05914 | DOI | MR | Zbl
[52] Grassi A., Gu J., Mariño M., “Non-perturbative approaches to the quantum Seiberg–Witten curve”, J. High Energy Phys., 2020:7 (2020), 106, 51 pp., arXiv: 1908.07065 | DOI | MR | Zbl
[53] Grassi A., Hao Q., Neitzke A., “Exact WKB methods in ${\rm SU}(2)$ ${\rm N}_f=1$”, J. High Energy Phys., 2022:1 (2022), 046, 63 pp., arXiv: 2105.03777 | DOI | MR
[54] Grassi A., Hatsuda Y., Mariño M., “Topological strings from quantum mechanics”, Ann. Henri Poincaré, 17 (2016), 3177–3235, arXiv: 1410.3382 | DOI | MR | Zbl
[55] Grassi A., Mariño M., “The complex side of the TS/ST correspondence”, J. Phys. A, 52 (2019), 055402, 22 pp., arXiv: 1708.08642 | DOI | Zbl
[56] Grassi A., Mariño M., Zakany S., “Resumming the string perturbation series”, J. High Energy Phys., 2015:5 (2015), 038, 35 pp., arXiv: 1405.4214 | DOI | MR
[57] Hatsuda Y., “Spectral zeta function and non-perturbative effects in ABJM Fermi-gas”, J. High Energy Phys., 2015:11 (2015), 086, 33 pp., arXiv: 1503.07883 | DOI | MR
[58] Hatsuda Y., Mariño M., “Exact quantization conditions for the relativistic Toda lattice”, J. High Energy Phys., 2016:5 (2016), 133, 35 pp., arXiv: 1511.02860 | DOI | MR | Zbl
[59] Hatsuda Y., Mariño M., Moriyama S., Okuyama K., “Non-perturbative effects and the refined topological string”, J. High Energy Phys., 2014:9 (2014), 168, 42 pp., arXiv: 1306.1734 | DOI | MR | Zbl
[60] Hatsuda Y., Moriyama S., Okuyama K., “Instanton effects in ABJM theory from Fermi gas approach”, J. High Energy Phys., 2013:1 (2013), 158, 40 pp., arXiv: 1211.1251 | DOI | MR | Zbl
[61] Hatsuda Y., Okuyama K., “Probing non-perturbative effects in M-theory”, J. High Energy Phys., 2014:10 (2014), 158, 35 pp., arXiv: 1407.3786 | DOI | MR | Zbl
[62] Hatsuda Y., Okuyama K., “Resummations and non-perturbative corrections”, J. High Energy Phys., 2015:9 (2015), 051, 29 pp., arXiv: 1505.07460 | DOI | MR
[63] Hatsuda Y., Sciarappa A., Zakany S., “Exact quantization conditions for the elliptic Ruijsenaars–Schneider model”, J. High Energy Phys., 2018:11 (2018), 118, 65 pp., arXiv: 1809.10294 | DOI | MR | Zbl
[64] Hollands L., Neitzke A., “Exact WKB and abelianization for the $T_3$ equation”, Comm. Math. Phys., 380 (2020), 131–186, arXiv: 1906.04271 | DOI | MR | Zbl
[65] Hollands L., Rüter P., Szabo R.J., “A geometric recipe for twisted superpotentials”, J. High Energy Phys., 2021:12 (2021), 164, 91 pp., arXiv: 2109.14699 | DOI | MR
[66] Hori K., Vafa C., Mirror symmetry, arXiv: hep-th/0002222
[67] Huang M.-x., Kashani-Poor A.-K., Klemm A., “The $\Omega$ deformed B-model for rigid ${\mathcal N}=2$ theories”, Ann. Henri Poincaré, 14 (2013), 425–497, arXiv: 1109.5728 | DOI | MR | Zbl
[68] Hyun S., Yi S.-H., “Non-compact topological branes on conifold”, J. High Energy Phys., 2006:11 (2006), 075, 34 pp., arXiv: hep-th/0609037 | DOI | MR
[69] Iqbal A., Kozçaz C., Vafa C., “The refined topological vertex”, J. High Energy Phys., 2009:10 (2009), 069, 58 pp., arXiv: hep-th/0701156 | DOI | MR
[70] Jeong S., Nekrasov N., “Opers, surface defects, and Yang–Yang functional”, Adv. Theor. Math. Phys., 24 (2020), 1789–1916, arXiv: 1806.08270 | DOI | MR
[71] Jeong S., Nekrasov N., “Riemann–Hilbert correspondence and blown up surface defects”, J. High Energy Phys., 2020:12 (2020), 006, 83 pp., arXiv: 2007.03660 | DOI | MR
[72] Kashani-Poor A.-K., “The wave function behavior of the open topological string partition function on the conifold”, J. High Energy Phys., 2007:4 (2007), 004, 47 pp., arXiv: hep-th/0606112 | DOI | MR
[73] Kashani-Poor A.-K., “Quantization condition from exact WKB for difference equations”, J. High Energy Phys., 2016:6 (2016), 180, 34 pp., arXiv: 1604.01690 | DOI | MR | Zbl
[74] Katz S., Klemm A., Vafa C., “Geometric engineering of quantum field theories”, Nuclear Phys. B, 497 (1997), 173–195, arXiv: hep-th/9609239 | DOI | MR | Zbl
[75] Klemm A., Lerche W., Mayr P., Vafa C., Warner N., “Self-dual strings and ${\mathcal N}=2$ supersymmetric field theory”, Nuclear Phys. B, 477 (1996), 746–764, arXiv: hep-th/9604034 | DOI | MR | Zbl
[76] Kozçaz C., Shakirov S., Vafa C., Yan W., “Refined topological branes”, Comm. Math. Phys., 385 (2021), 937–961, arXiv: 1805.00993 | DOI | MR | Zbl
[77] Krefl D., Mkrtchyan R.L., “Exact Chern–Simons/topological string duality”, J. High Energy Phys., 2015:10 (2015), 045, 27 pp., arXiv: 1506.03907 | DOI | MR
[78] Krefl D., Walcher J., “Extended holomorphic anomaly in gauge theory”, Lett. Math. Phys., 95 (2011), 67–88, arXiv: 1007.0263 | DOI | MR | Zbl
[79] Lencsés M., Novaes F., “Classical conformal blocks and accessory parameters from isomonodromic deformations”, J. High Energy Phys., 2018:4 (2018), 096, 37 pp., arXiv: 1709.03476 | DOI | MR
[80] Lockhart G., Vafa C., “Superconformal partition functions and non-perturbative topological strings”, J. High Energy Phys., 2018:10 (2018), 051, 43 pp., arXiv: 1210.5909 | DOI | MR
[81] Longhi P., “Instanton particles and monopole strings in 5D SU(2) supersymmetric Yang–Mills theory”, Phys. Rev. Lett., 126 (2021), 211601, 5 pp. | DOI | MR
[82] Mariño M., “Lectures on non-perturbative effects in large $N$ gauge theories, matrix models and strings”, Fortschr. Phys., 62 (2014), 455–540, arXiv: 1206.6272 | DOI | MR | Zbl
[83] Mariño M., “Spectral theory and mirror symmetry”, String-Math 2016, Proc. Sympos. Pure Math., 98, American Mathematical Society, Providence, RI, 2018, 259–294, arXiv: 1506.07757 | DOI | MR | Zbl
[84] Mariño M., Zakany S., “Exact eigenfunctions and the open topological string”, J. Phys. A, 50 (2017), 325401, 50 pp., arXiv: 1606.05297 | DOI | MR | Zbl
[85] Mariño M., Zakany S., “Wavefunctions, integrability, and open strings”, J. High Energy Phys., 2019:5 (2019), 014, 37 pp., arXiv: 1706.07402 | DOI | MR
[86] Maruyoshi K., Taki M., “Deformed prepotential, quantum integrable system and Liouville field theory”, Nuclear Phys. B, 841 (2010), 388–425, arXiv: 1006.4505 | DOI | MR | Zbl
[87] Mironov A., Morosov A., “Nekrasov functions and exact Bohr–Sommerfeld integrals”, J. High Energy Phys., 2010:4 (2010), 040, 15 pp., arXiv: 0910.5670 | DOI | MR | Zbl
[88] Mochizuki T., Doubly periodic monopoles and $q$-difference modules, arXiv: 1902.03551 | MR
[89] Nekrasov N.A., “Blowups in BPS/CFT correspondence, and Painlevé VI”, Ann. Henri Poincaré (to appear) , arXiv: 2007.03646 | DOI
[90] Nekrasov N.A., Rosly A.A., Shatashvili S.L., “Darboux coordinates, Yang–Yang functional, and gauge theory”, Theoret. and Math. Phys., 181 (2014), 1206–1234 ; Erratum, Theoret. and Math. Phys., 182 (2015), 311, arXiv: 1103.3919 | DOI | MR | Zbl | DOI | MR | Zbl
[91] Nekrasov N.A., Shatashvili S.L., “Quantization of integrable systems and four dimensional gauge theories”, XVIth International Congress on Mathematical Physics, World Scientific Publishing, Hackensack, NJ, 2010, 265–289, arXiv: 0908.4052 | DOI | MR | Zbl
[92] Okuda T., “Mirror symmetry and the flavor vortex operator in two dimensions”, J. High Energy Phys., 2015:10 (2015), 174, 7 pp., arXiv: 1508.07179 | DOI | MR | Zbl
[93] Ooguri H., Vafa C., “Knot invariants and topological strings”, Nuclear Phys. B, 577 (2000), 419–438, arXiv: hep-th/9912123 | DOI | MR | Zbl
[94] Pasquetti S., Schiappa R., “Borel and Stokes nonperturbative phenomena in topological string theory and $c=1$ matrix models”, Ann. Henri Poincaré, 11 (2010), 351–431, arXiv: 0907.4082 | DOI | MR | Zbl
[95] Polchinski J., “Combinatorics of boundaries in string theory”, Phys. Rev. D, 50 (1994), R6041–R6045, arXiv: hep-th/9407031 | DOI | MR
[96] Polchinski J., “Topological charges in 2D $\mathcal{N}=(2,2)$ theories and massive BPS states”, Phys. Rev. D, 92 (2015), 025044, 12 pp., arXiv: 1505.01508 | DOI
[97] Sun K., Wang X., Huang M.-x., “Exact quantization conditions, toric Calabi–Yau and non-perturbative topological string”, J. High Energy Phys., 2017:1 (2017), 061, 102 pp., arXiv: 1606.07330 | DOI | MR
[98] Wang X., Zhang G., Huang M.-x., “New exact quantization condition for toric Calabi–Yau geometries”, Phys. Rev. Lett., 115 (2015), 121601, 5 pp., arXiv: 1505.05360 | DOI
[99] Yoshida Y., Sugiyama K., “Localization of three-dimensional $\mathcal{N}=2$ supersymmetric theories on $S^1 \times D^2$”, PTEP. Prog. Theor. Exp. Phys., 2020, 113B02, 41 pp., arXiv: 1409.6713 | DOI | MR | Zbl
[100] Zakany S., “Quantized mirror curves and resummed WKB”, J. High Energy Phys., 2019:5 (2019), 114, 42 pp., arXiv: 1711.01099 | DOI | MR | Zbl