@article{SIGMA_2023_19_a61,
author = {Claudia Maria Chanu and Giovanni Rastelli},
title = {Separation of {Variables} and {Superintegrability} on {Riemannian} {Coverings}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2023},
volume = {19},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a61/}
}
TY - JOUR AU - Claudia Maria Chanu AU - Giovanni Rastelli TI - Separation of Variables and Superintegrability on Riemannian Coverings JO - Symmetry, integrability and geometry: methods and applications PY - 2023 VL - 19 UR - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a61/ LA - en ID - SIGMA_2023_19_a61 ER -
Claudia Maria Chanu; Giovanni Rastelli. Separation of Variables and Superintegrability on Riemannian Coverings. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a61/
[1] Appels M., Gregory R., Kubiznak D., “Thermodynamics of accelerating black holes”, Phys. Rev. Lett., 117 (2016), 131303, 5 pp., arXiv: 1604.08812 | DOI | MR
[2] Benenti S., “Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation”, J. Math. Phys., 38 (1997), 6578–6602 | DOI | MR | Zbl
[3] Benenti S., Chanu C., Rastelli G., “Remarks on the connection between the additive separation of the Hamilton–Jacobi equation and the multiplicative separation of the Schrödinger equation. I The completeness and Robertson conditions”, J. Math. Phys., 43 (2002), 5183–5222 | DOI | MR | Zbl
[4] Benenti S., Chanu C., Rastelli G., “Remarks on the connection between the additive separation of the Hamilton–Jacobi equation and the multiplicative separation of the Schrödinger equation. II First integrals and symmetry operators”, J. Math. Phys., 43 (2002), 5223–5253 | DOI | MR | Zbl
[5] Bolsinov A.V., Matveev V.S., Fomenko A.T., “Two-dimensional Riemannian metrics with an integrable geodesic flow. Local and global geometries”, Sb. Math., 189 (1998), 1441–1466 | DOI | MR | Zbl
[6] Chanu C., Degiovanni L., Rastelli G., “The Tremblay–Turbiner–Winternitz system as extended Hamiltonian”, J. Math. Phys., 55 (2014), 122701, 8 pp., arXiv: 1404.4825 | DOI | MR | Zbl
[7] Chanu C., Degiovanni L., Rastelli G., “Extended Hamiltonians, coupling-constant metamorphosis and the Post–Winternitz system”, SIGMA, 11 (2015), 094, 9 pp., arXiv: 1509.07288 | DOI | MR | Zbl
[8] Chanu C., Rastelli G., “Eigenvalues of Killing tensors and separable webs on Riemannian and pseudo-Riemannian manifolds”, SIGMA, 3 (2007), 021, 21 pp., arXiv: nlin.SI/0612042 | DOI | MR | Zbl
[9] Chanu C., Rastelli G., “Extended Hamiltonians and shift, ladder functions and operators”, Ann. Physics, 386 (2017), 254–274, arXiv: 1705.09519 | DOI | MR | Zbl
[10] Chavel I., Riemannian geometry: a modern introduction, Cambridge Stud. Adv. Math., 98, 2nd ed., Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl
[11] Cooper D., Hodgson C.D., Kerckhoff S.P., Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, 5, Mathematical Society of Japan, Tokyo, 2000 | MR | Zbl
[12] Dunajski M., Gavrea N., “Elizabethan vortices”, Nonlinearity, 36 (2023), 4169–4186, arXiv: 2301.06191 | DOI | MR | Zbl
[13] Katzin G.H., Levine J., “Quadratic first integrals of the geodesics in spaces of constant curvature”, Tensor (N.S.), 16 (1965), 97–104 | MR | Zbl
[14] Matveev V.S., “An example of a geodesic flow on the Klein bottle, integrable by a polynomial in the momentum of the fourth degree”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1997, no. 4, 47–48 | MR | Zbl
[15] Miller Jr. W., Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A, 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl
[16] Post S., Winternitz P., “An infinite family of superintegrable deformations of the Coulomb potential”, J. Phys. A, 43 (2010), 222001, 11 pp., arXiv: 1003.5230 | DOI | MR | Zbl
[17] Tremblay F., Turbiner A.V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A, 42 (2009), 242001, 10 pp., arXiv: 0904.0738 | DOI | MR | Zbl