Separation of Variables and Superintegrability on Riemannian Coverings
Symmetry, integrability and geometry: methods and applications, Tome 19 (2023) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce Stäckel separable coordinates on the covering manifolds $M_k$, where $k$ is a rational parameter, of certain constant-curvature Riemannian manifolds with the structure of warped manifold. These covering manifolds appear implicitly in literature as connected with superintegrable systems with polynomial in the momenta first integrals of arbitrarily high degree, such as the Tremblay–Turbiner–Winternitz system. We study here for the first time multiseparability and superintegrability of natural Hamiltonian systems on these manifolds and see how these properties depend on the parameter $k$.
Keywords: Riemannian coverings, integrable systems, separable coordinates.
@article{SIGMA_2023_19_a61,
     author = {Claudia Maria Chanu and Giovanni Rastelli},
     title = {Separation of {Variables} and {Superintegrability} on {Riemannian} {Coverings}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2023},
     volume = {19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a61/}
}
TY  - JOUR
AU  - Claudia Maria Chanu
AU  - Giovanni Rastelli
TI  - Separation of Variables and Superintegrability on Riemannian Coverings
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2023
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a61/
LA  - en
ID  - SIGMA_2023_19_a61
ER  - 
%0 Journal Article
%A Claudia Maria Chanu
%A Giovanni Rastelli
%T Separation of Variables and Superintegrability on Riemannian Coverings
%J Symmetry, integrability and geometry: methods and applications
%D 2023
%V 19
%U http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a61/
%G en
%F SIGMA_2023_19_a61
Claudia Maria Chanu; Giovanni Rastelli. Separation of Variables and Superintegrability on Riemannian Coverings. Symmetry, integrability and geometry: methods and applications, Tome 19 (2023). http://geodesic.mathdoc.fr/item/SIGMA_2023_19_a61/

[1] Appels M., Gregory R., Kubiznak D., “Thermodynamics of accelerating black holes”, Phys. Rev. Lett., 117 (2016), 131303, 5 pp., arXiv: 1604.08812 | DOI | MR

[2] Benenti S., “Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation”, J. Math. Phys., 38 (1997), 6578–6602 | DOI | MR | Zbl

[3] Benenti S., Chanu C., Rastelli G., “Remarks on the connection between the additive separation of the Hamilton–Jacobi equation and the multiplicative separation of the Schrödinger equation. I The completeness and Robertson conditions”, J. Math. Phys., 43 (2002), 5183–5222 | DOI | MR | Zbl

[4] Benenti S., Chanu C., Rastelli G., “Remarks on the connection between the additive separation of the Hamilton–Jacobi equation and the multiplicative separation of the Schrödinger equation. II First integrals and symmetry operators”, J. Math. Phys., 43 (2002), 5223–5253 | DOI | MR | Zbl

[5] Bolsinov A.V., Matveev V.S., Fomenko A.T., “Two-dimensional Riemannian metrics with an integrable geodesic flow. Local and global geometries”, Sb. Math., 189 (1998), 1441–1466 | DOI | MR | Zbl

[6] Chanu C., Degiovanni L., Rastelli G., “The Tremblay–Turbiner–Winternitz system as extended Hamiltonian”, J. Math. Phys., 55 (2014), 122701, 8 pp., arXiv: 1404.4825 | DOI | MR | Zbl

[7] Chanu C., Degiovanni L., Rastelli G., “Extended Hamiltonians, coupling-constant metamorphosis and the Post–Winternitz system”, SIGMA, 11 (2015), 094, 9 pp., arXiv: 1509.07288 | DOI | MR | Zbl

[8] Chanu C., Rastelli G., “Eigenvalues of Killing tensors and separable webs on Riemannian and pseudo-Riemannian manifolds”, SIGMA, 3 (2007), 021, 21 pp., arXiv: nlin.SI/0612042 | DOI | MR | Zbl

[9] Chanu C., Rastelli G., “Extended Hamiltonians and shift, ladder functions and operators”, Ann. Physics, 386 (2017), 254–274, arXiv: 1705.09519 | DOI | MR | Zbl

[10] Chavel I., Riemannian geometry: a modern introduction, Cambridge Stud. Adv. Math., 98, 2nd ed., Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl

[11] Cooper D., Hodgson C.D., Kerckhoff S.P., Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, 5, Mathematical Society of Japan, Tokyo, 2000 | MR | Zbl

[12] Dunajski M., Gavrea N., “Elizabethan vortices”, Nonlinearity, 36 (2023), 4169–4186, arXiv: 2301.06191 | DOI | MR | Zbl

[13] Katzin G.H., Levine J., “Quadratic first integrals of the geodesics in spaces of constant curvature”, Tensor (N.S.), 16 (1965), 97–104 | MR | Zbl

[14] Matveev V.S., “An example of a geodesic flow on the Klein bottle, integrable by a polynomial in the momentum of the fourth degree”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1997, no. 4, 47–48 | MR | Zbl

[15] Miller Jr. W., Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A, 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl

[16] Post S., Winternitz P., “An infinite family of superintegrable deformations of the Coulomb potential”, J. Phys. A, 43 (2010), 222001, 11 pp., arXiv: 1003.5230 | DOI | MR | Zbl

[17] Tremblay F., Turbiner A.V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A, 42 (2009), 242001, 10 pp., arXiv: 0904.0738 | DOI | MR | Zbl